Speed Parameters in the Level-Set Segmentation

被引:0
|
作者
Cinque, Luigi [1 ]
Cossu, Rossella [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Informat, I-00185 Rome, Italy
[2] CNR, Ist Applicaz Calcolo, I-00185 Rome, Italy
关键词
IMAGE SEGMENTATION; EVOLUTION;
D O I
10.1007/978-3-319-23117-4_47
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In image segmentation, based on the level set method, the evolution of the curve is determined by the speed function. In this paper we apply the level set segmentation to speckled images, in particular SAR (Synthetic Aperture Radar) images. Moreover we propose a parameters tuning of the speed function, obtained from the linear combination of the speed function of average intensities and of the image gradient. To show the validity of the proposed approach, we compare the segmentation results obtained from both synthetic and real images. Since there are not benchmark SAR images, computer images are been synthesized using speckle noise. Thus we show that the proposed speed function produces the best results, tuning the parameters in opportune way. The SAR images are PRecision Images (PRI), acquired during European Remote Sensing (ERS2) mission and CosmoSkyMed (CSM) image.
引用
收藏
页码:541 / 553
页数:13
相关论文
共 50 条
  • [1] Tuning of level-set speed function for speckled image segmentation
    Cinque, Luigi
    Cossu, Rossella
    Mansutti, Daniela
    Spitaleri, Rosa Maria
    Blaszczyk, Malgorzata
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2016, 19 (04) : 1081 - 1092
  • [2] An adaptive speed term based on homogeneity for level-set segmentation
    Jin, YP
    Laine, A
    Imielinska, C
    [J]. MEDICAL IMAGING 2002: IMAGE PROCESSING, VOL 1-3, 2002, 4684 : 383 - 390
  • [3] Tuning of level-set speed function for speckled image segmentation
    Luigi Cinque
    Rossella Cossu
    Daniela Mansutti
    Rosa Maria Spitaleri
    Malgorzata Blaszczyk
    [J]. Pattern Analysis and Applications, 2016, 19 : 1081 - 1092
  • [4] Efficient liver segmentation using a level-set method with optimal detection of the initial liver boundary from level-set speed images
    Lee, Jeongjin
    Kim, Nalrnkuy
    Lee, Ho
    Seo, Joon Beom
    Won, Hyung Jin
    Shin, Yong Moon
    Shin, Yeong Gil
    Kim, Soo-Hong
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2007, 88 (01) : 26 - 38
  • [5] Level-set based vessel segmentation accelerated with periodic monotonic speed function
    Wang, Chunliang
    Frimmel, Hans
    Smedby, Orjan
    [J]. MEDICAL IMAGING 2011: IMAGE PROCESSING, 2011, 7962
  • [6] GPU-accelerated level-set segmentation
    Julián Lamas-Rodríguez
    Dora B. Heras
    Francisco Argüello
    Dagmar Kainmueller
    Stefan Zachow
    Montserrat Bóo
    [J]. Journal of Real-Time Image Processing, 2016, 12 : 15 - 29
  • [7] GPU-accelerated level-set segmentation
    Lamas-Rodriguez, Julian
    Heras, Dora B.
    Arguello, Francisco
    Kainmueller, Dagmar
    Zachow, Stefan
    Boo, Montserrat
    [J]. JOURNAL OF REAL-TIME IMAGE PROCESSING, 2016, 12 (01) : 15 - 29
  • [8] PIPELINE SEGMENTATION USING LEVEL-SET METHOD
    Leangaramkul, A.
    Kasetkasem, T.
    Tipsuwan, Y.
    Isshiki, T.
    Chanwimaluang, T.
    Hoonsuwan, P.
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3880 - 3883
  • [9] Level-set segmentation of brain tumors using a threshold-based speed function
    Taheri, S.
    Ong, S. H.
    Chong, V. F. H.
    [J]. IMAGE AND VISION COMPUTING, 2010, 28 (01) : 26 - 37
  • [10] Level-Set Segmentation with Contour based Object Representation
    Weiler, Daniel
    Roehrbein, Florian
    Eggert, Julian
    [J]. IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 3229 - +