Poster: Reliable On-Ramp Merging via Multimodal Reinforcement Learning

被引:1
|
作者
Bagwe, Gaurav [1 ]
Li, Jian [2 ]
Deng, Xiaoheng [3 ]
Yuan, Xiaoyong [4 ]
Zhang, Lan [1 ]
机构
[1] Michigan Technol Univ, Dept Elect & Comp Engn, Houghton, MI 49931 USA
[2] Univ Sci & Technol China, Sch Cyber Sci & Technol, Hefei, Peoples R China
[3] Cent South Univ, Sch Comp Sci & Engn, Changsha, Peoples R China
[4] Michigan Technol Univ, Coll Comp, Houghton, MI 49931 USA
关键词
D O I
10.1109/SEC54971.2022.00043
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The recent success of Artificial Intelligence (AI) has enabled autonomous driving with better perception capabilities. However, on-ramp merging remains one of the main challenging scenarios for reliable autonomous driving. Within the limited onboard sensing range, a merging vehicle can hardly observe and predict the main road conditions properly, restricting appropriate merging maneuvers. In this poster, we outline ongoing research ideas for reliable and autonomous on-ramp merging assisted by vehicular communications. By jointly leveraging the basic safety messages (BSM) from neighboring vehicles and the surveillance images, a merging vehicle can perform reliable driving via robust multimodal reinforcement learning. Some experimental results are provided to evaluate our idea under the Simulation of Urban MObility (SUMO) platform.
引用
收藏
页码:313 / 315
页数:3
相关论文
共 50 条
  • [1] Multi-Agent Reinforcement Learning for On-Ramp Merging Control
    Li, Chun
    Wu, Zhizhou
    Xu, Hongxin
    Liang, Yunyi
    Computer Engineering and Applications, 2024, 60 (23) : 349 - 356
  • [2] Combining Reinforcement Learning with Model Predictive Control for On-Ramp Merging
    Lubars, Joseph
    Gupta, Harsh
    Chinchali, Sandeep
    Li, Liyun
    Raja, Adnan
    Srikant, R.
    Wu, Xinzhou
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 942 - 947
  • [3] Anti-Jerk On-Ramp Merging Using Deep Reinforcement Learning
    Lin, Yuan
    McPhee, John
    Azad, Nasser L.
    2020 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2020, : 7 - 14
  • [4] Multi-agent Reinforcement Learning for Cooperative On-Ramp Merging of Connected Automated Vehicles
    Zhao, Boyuan
    Cui, Jianxun
    IOT AS A SERVICE, IOTAAS 2023, 2025, 585 : 200 - 221
  • [5] Multi-agent Reinforcement Learning for Safe Driving in On-ramp Merging of Autonomous Vehicles
    Foxconn, WI, United States
    Proc. Int. Conf. Cloud Comput., Data Sci. Eng., Conflu., (644-651):
  • [6] Graph-based multi agent reinforcement learning for on-ramp merging in mixed traffic
    Xu, Dongwei
    Zhang, Biao
    Qiu, Qingwei
    Li, Haijian
    Guo, Haifeng
    Wang, Baojie
    APPLIED INTELLIGENCE, 2024, 54 (08) : 6400 - 6414
  • [7] Deep Multi-Agent Reinforcement Learning for Highway On-Ramp Merging in Mixed Traffic
    Chen, Dong
    Hajidavalloo, Mohammad R.
    Li, Zhaojian
    Chen, Kaian
    Wang, Yongqiang
    Jiang, Longsheng
    Wang, Yue
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (11) : 11623 - 11638
  • [8] On-Ramp Merging for Highway Autonomous Driving: An Application of a New Safety Indicator in Deep Reinforcement Learning
    Li, Guofa
    Zhou, Weiyan
    Lin, Siyan
    Li, Shen
    Qu, Xingda
    AUTOMOTIVE INNOVATION, 2023, 6 (03) : 453 - 465
  • [9] On-Ramp Merging for Highway Autonomous Driving: An Application of a New Safety Indicator in Deep Reinforcement Learning
    Guofa Li
    Weiyan Zhou
    Siyan Lin
    Shen Li
    Xingda Qu
    Automotive Innovation, 2023, 6 : 453 - 465
  • [10] Leveraging on Deep Reinforcement Learning for Autonomous Safe Decision-Making in Highway On-ramp Merging
    Kherroubi, Zine el Abidine
    Aknine, Samir
    Bacha, Rebiha
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 15815 - 15816