Baryogenesis, dark matter and inflation in the next-to minimal supersymmetric standard model

被引:20
|
作者
Balazs, Csaba [1 ,2 ,3 ,4 ]
Mazumdar, Anupam [5 ]
Pukartas, Ernestas [5 ]
White, Graham [1 ,2 ,3 ]
机构
[1] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia
[2] Monash Univ, Monash Ctr Astrophys, Clayton, Vic 3800, Australia
[3] Monash Univ, ARC Ctr Excellence Particle Phys, Clayton, Vic 3800, Australia
[4] Monash Univ, Australian Collaboration Accelerator Sci, Clayton, Vic 3800, Australia
[5] Univ Lancaster, Consortium Fundamental Phys, Lancaster LA1 4YB, England
来源
关键词
Beyond Standard Model; Supersymmetric Standard Model; CP violation; Renormalization Group; BARYON-NUMBER NONCONSERVATION; ELECTROWEAK BARYOGENESIS; CP-INVARIANCE; CONSTRAINTS; ASYMMETRY; VIOLATION; UNIVERSE; PROGRAM;
D O I
10.1007/JHEP01(2014)073
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Explaining baryon asymmetry, dark matter and inflation are important elements of a successful theory that extends beyond the Standard Model of particle physics. In this paper we explore these issues within Next-to-Minimal Supersymmetric Standard Model (NMSSM) by studying the conditions for a strongly first order electroweak phase transition, the abundance of the lightest supersymmetric particle (LSP), and inflation driven by a gauge invariant flat direction of MSSM - made up of right handed squarks. We present the regions of parameter space which can yield successful predictions for cosmic microwave background (CMB) radiation through inflation, the observed relic density for dark matter, and successful baryogenesis. Constrains by collider measurements (such as the recent Higgs mass bound), branching ratios of rare, flavour violating decays, and the invisible Z decay width are also imposed. We explore where dark matter interactions with xenon nuclei would fall within current bounds of XENON100 and the projected limits for the XENON1T and LUX experiments.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Baryogenesis, dark matter and inflation in the next-to-minimal supersymmetric standard model
    Csaba Balázs
    Anupam Mazumdar
    Ernestas Pukartas
    Graham White
    [J]. Journal of High Energy Physics, 2014
  • [2] Dark matter in a constrained next-to-minimal supersymmetric standard model
    Hugonie, C.
    Belanger, G.
    Pukhov, A.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2007, (11):
  • [3] Dark matter via baryogenesis: Affleck-Dine mechanism in the minimal supersymmetric standard model
    El Bourakadi, K.
    Ferricha-Alami, M.
    Sakhi, Z.
    Bennai, M.
    Chakir, H.
    [J]. MODERN PHYSICS LETTERS A, 2024, 39 (14)
  • [4] Direct dark matter detection in the next-to-minimal supersymmetric standard model
    Bednyakov, VA
    Klapdor-Kleingrothaus, HV
    [J]. PHYSICAL REVIEW D, 1999, 59 (02)
  • [5] Next-to-minimal supersymmetric standard model and direct dark matter detection
    Bednyakov, VA
    Klapdor-Kleingrothaus, HV
    [J]. DARK MATTER IN ASTROPHYSICS AND PARTICLE PHYSICS 1998, 1999, : 559 - 571
  • [6] Light neutralino dark matter in the next-to-minimal supersymmetric standard model
    Gunion, JF
    Hooper, D
    McElrath, B
    [J]. PHYSICAL REVIEW D, 2006, 73 (01):
  • [7] Supersymmetric inflation and baryogenesis via extra-flat directions of the minimal supersymmetric standard model
    McDonald, John
    Seto, Osamu
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2008, (07):
  • [8] Electroweak baryogenesis in the next to minimal supersymmetric model
    Davies, AT
    Froggatt, CD
    Moorhouse, RG
    [J]. PHYSICS LETTERS B, 1996, 372 (1-2) : 88 - 94
  • [9] The Phenomenological Research on Higgs and Dark Matter in the Next-to-Minimal Supersymmetric Standard Model
    Heng, Zhaoxia
    Yang, Shenshen
    Li, Xingjuan
    Shang, Liangliang
    [J]. SYMMETRY-BASEL, 2023, 15 (02):
  • [10] Phenomenological viability of neutralino dark matter in the next-to-minimal supersymmetric standard model
    Cerdeno, D. G.
    Gabrielli, E.
    Lopez-Fogliani, D. E.
    Munoz, C.
    Teixeira, A. M.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2007, (06):