When cells of Bacillus sp. strain GL1 were grown in a medium containing xanthan as a carbon source, a.-mannosidase exhibiting activity toward p-nitrophenyl-alpha-D-mannopyranoside (pNP-alpha-D-Man) was produced intracellularly. The 350-kDa alpha-mannosidase purified from a cell extract of the bacterium was a trimer comprising three identical subunits, each with a molecular mass of 110 kDa. The enzyme hydrolyzed pNP-alpha-D-Man (K-m = 0.49 mM) and D-mannosyl-(alpha-1,3)-D-glucose most efficiently at pH 7.5 to 9.0, indicating that the enzyme catalyzes the last step of the xanthan depolymerization pathway of Bacillus sp. strain GL1. The gene for a-mannosidase cloned most by using N-terminal amino acid sequence information contained an open reading frame (3,144 bp) capable of coding for a polypeptide with a molecular weight of 119,239. The deduced amino acid sequence showed homology with the amino acid sequences of alpha-mannosidases belonging to glycoside hydrolase family 38.