Conditionally Gaussian stochastic integrals

被引:1
|
作者
Privault, Nicolas [1 ]
She, Qihao [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
关键词
Quadratic Brownian functionals; Multidimensional Brownian motion; Moment identities; Characteristic functions;
D O I
10.1016/j.crma.2015.09.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive conditional Gaussian type identities of the form E [exp (i(T)integral(0) u(t)dBt)vertical bar(T)integral(0) vertical bar u(t)vertical bar(2)dt] = exp (-1/2 (T)integral(0) vertical bar u(t)vertical bar(2) dt) for Brownian stochastic integrals, under conditions on the process (u(t))(t is an element of[0,T]) specified using the Malliavin calculus. This applies in particular to the quadratic Brownian integral integral(t)(0) AB(s)dB(s) under the matrix condition A dagger A(2) = 0, using a characterization of Yor [6]. (C) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1153 / 1158
页数:6
相关论文
共 50 条