Robust recursive impedance estimation for automotive lithium-ion batteries

被引:39
|
作者
Fridholm, Bjorn [1 ,2 ]
Wik, Torsten [3 ]
Nilsson, Magnus [2 ]
机构
[1] Volvo Car Corp, Gothenburg, Sweden
[2] Viktoria Swedish ICT, Gothenburg, Sweden
[3] Chalmers Univ Technol, Dept Signals & Syst, Automat Control, S-41296 Gothenburg, Sweden
关键词
Recursive parameter estimation; Kalman filter; Adaptive estimation; Battery impedance estimation; Robustness; Lithium-ion battery; PHYSICAL PRINCIPLES; MANAGEMENT-SYSTEMS; HEALTH ESTIMATION; AGING MECHANISMS; STATE ESTIMATION; PARAMETER; BEHAVIOR; CHARGE; PACKS;
D O I
10.1016/j.jpowsour.2015.11.033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recursive algorithms, such as recursive least squares (RLS) or Kalman filters, are commonly used in battery management systems to estimate the electrical impedance of the battery cell. However, these algorithms can in some cases run into problems with bias and even divergence of the estimates. This article illuminates problems that can arise in the online estimation using recursive methods, and lists modifications to handle these issues. An algorithm is also proposed that estimates the impedance by separating the problem in two parts; one estimating the ohmic resistance with an RLS approach, and another one where the dynamic effects are estimated using an adaptive Kalman filter (AKF) that is novel in the battery field. The algorithm produces robust estimates of ohmic resistance and time constant of the battery cell in closed loop with SoC estimation, as demonstrated by both in simulations and with experimental data from a lithium-ion battery cell. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:33 / 41
页数:9
相关论文
共 50 条
  • [1] The impedance of lithium-ion batteries
    T. L. Kulova
    V. A. Tarnopol’skii
    A. M. Skundin
    Russian Journal of Electrochemistry, 2009, 45 : 38 - 44
  • [2] The impedance of lithium-ion batteries
    Kulova, T. L.
    Tarnopol'skii, V. A.
    Skundin, A. M.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2009, 45 (01) : 38 - 44
  • [3] Simplified Modeling and Characterization of the Internal Impedance of Lithium-Ion Batteries for Automotive Applications
    Scavuzzo, S.
    Ferraris, A.
    Airale, A. G.
    Carello, M.
    Locorotondo, E.
    Pugi, L.
    Berzi, L.
    Pierini, M.
    2019 AEIT INTERNATIONAL CONFERENCE OF ELECTRICAL AND ELECTRONIC TECHNOLOGIES FOR AUTOMOTIVE (AEIT AUTOMOTIVE), 2019,
  • [4] Robust and Adaptive Estimation of State of Charge for Lithium-Ion Batteries
    Zhang, Caiping
    Wang, Le Yi
    Li, Xue
    Chen, Wen
    Yin, George G.
    Jiang, Jiuchun
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (08) : 4948 - 4957
  • [5] Impedance Characteristics and Diagnoses of Automotive Lithium-Ion Batteries at 7.5% to 93.0% State of Charge
    Huang, Qiu-An
    Shen, Yue
    Huang, Yunhui
    Zhang, Lei
    Zhang, Jiujun
    ELECTROCHIMICA ACTA, 2016, 219 : 751 - 765
  • [6] SoC Estimation for Lithium-Ion Batteries in Automotive Systems: Sliding Mode Observation
    Abdulhamitbilal, Erkan
    2016 14TH INTERNATIONAL WORKSHOP ON VARIABLE STRUCTURE SYSTEMS (VSS), 2016, : 312 - 316
  • [7] Impedance Diagnostic for Overcharged Lithium-Ion Batteries
    Love, Corey T.
    Swider-Lyons, Karen
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2012, 15 (04) : A53 - A56
  • [8] A Portable Impedance Analyzer for Lithium-ion Batteries
    Huang, Guofeng
    Zhu, Xiaozhang
    2024 9TH INTERNATIONAL CONFERENCE ON ELECTRONIC TECHNOLOGY AND INFORMATION SCIENCE, ICETIS 2024, 2024, : 144 - 147
  • [9] Impedance of commercially available lithium-ion batteries
    Saito, Y
    Takano, K
    Negishi, A
    Nozaki, K
    Kato, K
    LITHIUM BATTERIES, PROCEEDINGS, 2000, 99 (25): : 671 - 680
  • [10] Impedance Evolution Characteristics in Lithium-Ion Batteries
    Juarez-Robles, Daniel
    Chen, Chien-Fan
    Barsukov, Yevgen
    Mukherjee, Partha P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) : A837 - A847