Solving the cardiac bidomain equations using graphics processing units

被引:9
|
作者
Amorim, Ronan Mendonca [1 ]
dos Santos, Rodrigo Weber [1 ]
机构
[1] Univ Juiz de Fora, Grad Program Computat Modeling, Juiz De Fora, Brazil
关键词
Cardiac modeling; Bidomain equations; Graphics processing units; Preconditioned conjugate gradient; Multigrid method; SOLVERS;
D O I
10.1016/j.jocs.2012.06.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The computational modeling of the heart has been shown to be a very useful tool. The models, which become more realistic each day, provide a better understanding of the complex biophysical processes related to the electrical activity in the heart, e.g., in the case of cardiac arrhythmias. However, the increasing complexity of the models challenges high performance computing in many aspects. This work presents a cardiac simulator based on the bidomain equations that exploits the new parallel architecture of graphics processing units (GPUs). The initial results are promising. The use of the CPU accelerates the cardiac simulator by about 6 times compared to the best performance obtained in a general-purpose processor (CPU). In addition, the CPU implementation was compared to an efficient parallel implementation developed for cluster computing. A single desktop computer equipped with a CPU is shown to be 1.4 times faster than the parallel implementation of the bidomain equations running on a cluster composed of 16 processing cores. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:370 / 376
页数:7
相关论文
共 50 条
  • [1] Accelerating Cardiac Bidomain Simulations Using Graphics Processing Units
    Neic, Aurel
    Liebmann, Manfred
    Hoetzl, Elena
    Mitchell, Lawrence
    Vigmond, Edward J.
    Haase, Gundolf
    Plank, Gernot
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (08) : 2281 - 2290
  • [2] Solving the Euler equations on graphics processing units
    Hagen, Trond Runar
    Lie, Knut-Andreas
    Natvig, Jostein R.
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 4, PROCEEDINGS, 2006, 3994 : 220 - 227
  • [3] Solving the cardiac bidomain equations for discontinuous conductivities
    Austin, Travis M.
    Trew, Mark L.
    Pullan, Andrew J.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (07) : 1265 - 1272
  • [4] Solving Non-linear Systems of Equations on Graphics Processing Units
    Dechevsky, Lubomir T.
    Bang, Borre
    Gundersen, Joakim
    Laksa, Arne
    Kristoffersen, Arnt R.
    LARGE-SCALE SCIENTIFIC COMPUTING, 2010, 5910 : 719 - 729
  • [5] Solving finite-difference equations for diffractive optics problems using graphics processing units
    Golovashkin, Dimitry Lvovich
    Vorotnokova, Daria G.
    Kochurov, Alexander V.
    Malysheva, Svetlana A.
    OPTICAL ENGINEERING, 2013, 52 (09)
  • [6] Solving diffractive optics problems using graphics processing units
    Golovashkin D.L.
    Kasanskiy N.L.
    Optical Memory and Neural Networks, 2011, 20 (2) : 85 - 89
  • [7] Framework for Modular, Flexible and Efficient Solving the Cardiac Bidomain Equations Using PETSc
    Seemann, G.
    Sachse, F. B.
    Karl, M.
    Weiss, D. L.
    Heuveline, V.
    Doessel, O.
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2008, 2010, 15 : 363 - +
  • [8] Accelerating cardiac excitation spread simulations using graphics processing units
    Rocha, B. M.
    Campos, F. O.
    Amorim, R. M.
    Plank, G.
    dos Santos, R. W.
    Liebmann, M.
    Haase, G.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2011, 23 (07): : 708 - 720
  • [9] Solving the many-body field equations of a point induced dipole potential on graphics processing units
    Belof, Jonathan L.
    Space, Brian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [10] Solvers for the cardiac bidomain equations
    Vigmond, E. J.
    Weber dos Santos, R.
    Prassl, A. J.
    Deo, M.
    Plank, G.
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2008, 96 (1-3): : 3 - 18