ISpace: Interactive volume data classification techniques using independent component analysis

被引:12
|
作者
Takanashi, I
Lum, EB
Ma, KL
Muraki, S
机构
关键词
histogram; image processing; independent component analysis; medical imaging; multivariate data analysis; multimodality data; scientific visualization; segmentation; volume rendering;
D O I
10.1109/PCCGA.2002.1167880
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper introduces an interactive classification technique for volume data, called ISpace, which uses Independent Component Analysis (ICA) and a multidimensional histogram of the volume data in a transformed space. Essentially, classification in the volume domain becomes equivalent to interactive clipping in the ICA space, which as demonstrated using several examples is more intuitive and direct for the user to classify data. The result is an opacity transfer function defined for rendering multivariate scalar volume data.
引用
收藏
页码:366 / 374
页数:9
相关论文
共 50 条
  • [1] Gene Expression Data Classification Using Consensus Independent Component Analysis
    Chun-Hou Zheng1
    2 Intelligent Computing Lab
    [J]. Genomics,Proteomics & Bioinformatics, 2008, (02) : 74 - 82
  • [2] Volume component analysis for classification of LiDAR data
    Varney, Nina M.
    Asari, Vijayan K.
    [J]. OPTICAL PATTERN RECOGNITION XXVI, 2015, 9477
  • [3] Interactive classification using data envelopment analysis
    Pendharkar, Parag C.
    Troutt, Marvin D.
    [J]. ANNALS OF OPERATIONS RESEARCH, 2014, 214 (01) : 125 - 141
  • [4] Interactive classification using data envelopment analysis
    Parag C. Pendharkar
    Marvin D. Troutt
    [J]. Annals of Operations Research, 2014, 214 : 125 - 141
  • [5] Multispectral image classification using independent component analysis and data dimensionality expansion approaches
    Du, Q
    Howard, T
    [J]. IMAGING SPECTROMETRY X, 2004, 5546 : 374 - 381
  • [6] Texture classification using kernel independent component analysis
    Cheng, J
    Liu, QS
    Lu, HQ
    Chen, YW
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, 2004, : 620 - 623
  • [7] Efficient Texture Classification Using Independent Component Analysis
    Hawashin, Bilal
    Mansour, Ayman
    Abukhait, Jafar
    Khazalah, Fayez
    AlZu'bi, Shadi
    Kanan, Tarek
    Obaidat, Mohammad
    Elbes, Mohammed
    [J]. 2019 IEEE JORDAN INTERNATIONAL JOINT CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY (JEEIT), 2019, : 544 - 547
  • [8] EEG classification using generative independent component analysis
    Chiappa, S
    Barber, D
    [J]. NEUROCOMPUTING, 2006, 69 (7-9) : 769 - 777
  • [9] Data partitioning and independent component analysis techniques applied to fMRI
    Wismüller, A
    Meyer-Bäse, A
    Lange, O
    Otto, T
    Auer, D
    [J]. INDEPENDENT COMPONENT ANALYSES, WAVELETS, UNSUPERVISED SMART SENSORS, AND NEURAL NETWORKS II, 2004, 5439 : 104 - 115
  • [10] Independent component analysis and feature extraction techniques for NDT data
    Morabito, CF
    [J]. MATERIALS EVALUATION, 2000, 58 (01) : 85 - 92