Keypoint-Based Object Tracking Using Modified Median Flow

被引:0
|
作者
Dattathreya [1 ]
Han, Sangpil [2 ]
Kim, Min-jae [2 ]
Maik, Vivek [1 ]
Paik, Joonki [2 ]
机构
[1] Oxford Coll Engn, Dept Elect & Commun, Bangalore 68, Karnataka, India
[2] Chung Ang Univ, Grad Sch Adv Imaging Sci & Film, Image Proc & Intelligent Syst Lab, Seoul, South Korea
关键词
Object tracking; median flow tracker; error estimation; optical flow;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposed robust object tracking using error filter. Proposed method consists of four steps: i) execution of tracking algorithm based on key point, ii) estimation of key point using error filter, iii) selection of key point as filtering outliers using Random Sample Consensus (RANSAC), and determination of object movement. The proposed method can track when object is occluded, abruptly change of appearance. As a result, the proposed methods can be applied to various application such as advanced driver assistance system, surveillance system.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] A Keypoint-based Fast Object Tracking Algorithm
    Cao, Weihua
    Ling, Qiang
    Li, Feng
    Zheng, Quan
    Wang, Song
    [J]. PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 4102 - 4106
  • [2] DYNAMIC KEYPOINT-BASED ALGORITHM OF OBJECT TRACKING
    Morgacheva, A. I.
    Kulikov, V. A.
    Kosykh, V. P.
    [J]. INTERNATIONAL WORKSHOP PHOTOGRAMMETRIC AND COMPUTER VISION TECHNIQUES FOR VIDEO SURVEILLANCE, BIOMETRICS AND BIOMEDICINE, 2017, 42-2 (W4): : 79 - 82
  • [3] Robust and adaptive keypoint-based object tracking
    Pieropan, Alessandro
    Bergstroem, Niklas
    Ishikawa, Masatoshi
    Kjellstrom, Hedvig
    [J]. ADVANCED ROBOTICS, 2016, 30 (04) : 258 - 269
  • [4] Efficient Online Structured Output Learning for Keypoint-Based Object Tracking
    Hare, Sam
    Saffari, Amir
    Torr, Philip H. S.
    [J]. 2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 1894 - 1901
  • [5] Real-time Keypoint-Based Object Tracking via Online Learning
    Guo, Bo
    Liu, Juan
    [J]. 2013 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2013, : 907 - 911
  • [6] Local Keypoint-Based Image Detector with Object Detection
    Grycuk, Rafal
    Scherer, Magdalena
    Voloshynovskiy, Sviatoslav
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2017, PT I, 2017, 10245 : 507 - 517
  • [7] Keypoint-based Static Object Removal from Photographs
    Volkov, Alexandr
    Efimova, Valeria
    Shalamov, Viacheslav
    Filchenkov, Andrey
    [J]. THIRTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2020), 2021, 11605
  • [8] Gradient Corner Pooling for Keypoint-Based Object Detection
    Li, Xuyang
    Xie, Xuemei
    Yu, Mingxuan
    Luo, Jiakai
    Rao, Chengwei
    Shi, Guangming
    [J]. THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 2, 2023, : 1460 - 1467
  • [9] Visual object categorization with new keypoint-based adaBoost features
    Bdiri, Taoufik
    Moutarde, Fabien
    Steux, Bruno
    [J]. 2009 IEEE INTELLIGENT VEHICLES SYMPOSIUM, VOLS 1 AND 2, 2009, : 393 - 398
  • [10] Multi-Task Structure-Aware Context Modeling for Robust Keypoint-Based Object Tracking
    Li, Xi
    Zhao, Liming
    Ji, Wei
    Wu, Yiming
    Wu, Fei
    Yang, Ming-Hsuan
    Tao, Dacheng
    Reid, Ian
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (04) : 915 - 927