Fatigue-Crack-Growth Behavior of Two Pipeline Steels

被引:1
|
作者
Chen, Bilin [1 ]
Wang, Gongyao [1 ]
Chen, Shuying [1 ]
Muralidharan, Govindarajan [2 ]
Stalheim, Doug [3 ]
Sun, An-Cheng [4 ]
Huang, E-Wen [5 ,6 ]
Liaw, Peter K. [1 ]
机构
[1] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN 37831 USA
[3] DGS Met Solut Inc, 15003 NE 10th St, Vancouver, WA 98684 USA
[4] Yuan Ze Univ, Dept Chem Engn & Mat Sci, 135 Yuan Tung Rd, Chungli 32003, Taiwan
[5] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 300, Taiwan
[6] Ind Technol Res Inst, Mat & Chem Res Labs, Zhudong 31040, Hsinchu County, Taiwan
基金
美国国家科学基金会;
关键词
NEUTRON-DIFFRACTION; STRESS RATIOS; TIP; ALLOY; EVOLUTION; CLOSURE;
D O I
10.1002/adem.201600340
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The fatigue-crack-growth behavior of two types of pipeline steels, Alloy B [Fe-0.05C-1.52Mn-0.12Si-0.092Nb, weight percent (wt%)] and Alloy C (Fe-0.04C-1.61Mn-0.14Si-0.096Nb, wt%), have been investigated. Compact-tension (CT) specimens have been tested at various frequencies (10, 1, and 0.1 Hz) and different R ratios (0.1 and 0.5, R = P-min/P-max where P-min is the minimum applied load, and P-max is the maximum applied load) in air. It is concluded that higher R ratios lead to faster crack-growth rates (FCGRs), while frequency does not have much influence on FCGRs. Moreover, Alloy B tends to have better fatigue resistance than Alloy C under various test conditions in air.
引用
收藏
页码:2028 / 2039
页数:12
相关论文
共 50 条
  • [1] FATIGUE-CRACK-GROWTH THRESHOLD DATA FOR LOW-ALLOY STEELS
    ELSENDER, A
    HOPKINS, P
    BATTE, AD
    [J]. METALS TECHNOLOGY, 1980, 7 (JUN): : 256 - 258
  • [2] Fatigue crack growth of two pipeline steels in a pressurized hydrogen environment
    Slifka, Andrew J.
    Drexler, Elizabeth S.
    Nanninga, Nicholas E.
    Levy, Yaakov S.
    McColskey, J. David
    Amaro, Robert L.
    Stevenson, April E.
    [J]. CORROSION SCIENCE, 2014, 78 : 313 - 321
  • [3] ANALYTICAL AND EXPERIMENTAL FATIGUE-CRACK-GROWTH BEHAVIOR OF AN AIRCRAFT HORIZONTAL STABILIZER
    SMITH, SH
    FORTE, TP
    MALIK, HJ
    GHADIALI, ND
    [J]. EXPERIMENTAL MECHANICS, 1978, 18 (05) : N35 - N35
  • [4] Fatigue crack growth in operated gas pipeline steels
    Hredil, Myroslava
    Krechkovska, Halyna
    Tsyrulnyk, Oleksandr
    Student, Oleksandra
    [J]. 1ST MEDITERRANEAN CONFERENCE ON FRACTURE AND STRUCTURAL INTEGRITY (MEDFRACT1), 2020, 26 : 409 - 416
  • [5] Near- threshold Fatigue Crack Growth Behavior and Crack Closure of Natural Gas Pipeline Steels
    Kim, Young-pyo
    Kim, Cheol-man
    Kim, Woo-sik
    Song, Kyo-soo
    Shin, Kwang-seon
    [J]. 11TH INTERNATIONAL CONFERENCE ON THE MECHANICAL BEHAVIOR OF MATERIALS (ICM11), 2011, 10
  • [6] REVIEW OF FATIGUE-CRACK-GROWTH PREDICTION METHODS
    NEWMAN, JC
    [J]. EXPERIMENTAL MECHANICS, 1977, 17 (10) : 398 - 399
  • [7] REVIEW OF FATIGUE-CRACK-GROWTH PREDICTION METHODS
    NELSON, DV
    [J]. EXPERIMENTAL MECHANICS, 1977, 17 (02) : 41 - 49
  • [8] A Review of Fatigue Crack Growth for Pipeline Steels Exposed to Hydrogen
    Nanninga, N.
    Slifka, A.
    Levy, Y.
    White, C.
    [J]. JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 2010, 115 (06) : 437 - 452
  • [9] Corrosion fatigue crack growth modelling for subsea pipeline steels
    Cheng, Ankang
    Chen, Nian-Zhong
    [J]. OCEAN ENGINEERING, 2017, 142 : 10 - 19
  • [10] Fatigue Crack Growth Evaluation of Pipeline Steels and Girth Welds
    Park, Dong-Yeob
    Liang, Jie
    [J]. JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 2023, 145 (06):