Efficient Bayesian estimation of multivariate state space models

被引:11
|
作者
Strickland, Chris M. [1 ]
Turner, Ian. W. [1 ]
Denham, Robert [2 ]
Mengersen, Kerrie L. [1 ]
机构
[1] Queensland Univ Technol, Sch Math, Brisbane, Qld 4001, Australia
[2] Ctr Remote Sensing, Dept Environm & Resource Management, Indooroopilly, Qld 4068, Australia
基金
澳大利亚研究理事会;
关键词
TIME-SERIES; SIMULATION; CYCLES;
D O I
10.1016/j.csda.2009.04.019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A Bayesian Markov chain Monte Carlo methodology is developed for the estimation of multivariate linear Gaussian state space models. In particular, an efficient simulation smoothing algorithm is proposed that makes use of the univariate representation of the state space model. Substantial gains over existing algorithms in computational efficiency are achieved using the new simulation smoother for the analysis of high dimensional multivariate time series. The methodology is used to analyse a multivariate time series dataset of the Normalised Difference Vegetation Index (NDVI), which is a proxy for the level of live vegetation, for a particular grazing property located in Queensland, Australia. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:4116 / 4125
页数:10
相关论文
共 50 条
  • [1] Bayesian multivariate nonlinear state space copula models
    Kreuzer, Alexander
    Dalla Valle, Luciana
    Czado, Claudia
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 188
  • [2] Multivariate control charts based on Bayesian state space models
    Triantafyllopoulos, K.
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2006, 22 (06) : 693 - 707
  • [3] Efficient likelihood estimation in state space models
    Fuh, Cheng-Der
    [J]. ANNALS OF STATISTICS, 2006, 34 (04): : 2026 - 2068
  • [4] Bayesian estimation of state space models using moment conditions
    Gallant, A. Ronald
    Giacomini, Raffaella
    Ragusa, Giuseppe
    [J]. JOURNAL OF ECONOMETRICS, 2017, 201 (02) : 198 - 211
  • [5] DIFFUSION ESTIMATION OF STATE-SPACE MODELS: BAYESIAN FORMULATION
    Dedecius, Kamil
    [J]. 2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2014,
  • [6] ON-LINE BAYESIAN PARAMETER ESTIMATION IN ELECTROCARDIOGRAM STATE SPACE MODELS
    Suotsalo, Kimmo
    Sarkka, Simo
    [J]. 2018 IEEE 28TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2018,
  • [7] Computationally Efficient Bayesian Learning of Gaussian Process State Space Models
    Svensson, Andreas
    Solin, Arno
    Sarkka, Simo
    Schon, Thomas B.
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 213 - 221
  • [8] Efficient estimation of conditionally linear and Gaussian state space models
    Moura, Guilherme V.
    Turatti, Douglas Eduardo
    [J]. ECONOMICS LETTERS, 2014, 124 (03) : 494 - 499
  • [9] Efficient Bayesian Inference for Nonlinear State Space Models With Univariate Autoregressive State Equation
    Kreuzer, Alexander
    Czado, Claudia
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (03) : 523 - 534
  • [10] BAYESIAN STATE SPACE MODELS IN MACROECONOMETRICS
    Chan, Joshua C. C.
    Strachan, Rodney W.
    [J]. JOURNAL OF ECONOMIC SURVEYS, 2023, 37 (01) : 58 - 75