Fast Computing Framework for Convolutional Neural Networks

被引:1
|
作者
Korytkowski, Marcin [1 ]
Staszewski, Pawel [1 ]
Woldan, Piotr [1 ]
Scherer, Rafal [1 ]
机构
[1] Czestochowa Tech Univ, Inst Computat Intelligence, Comp Vis & Data Min Lab, Al Armii Krajowej 36, PL-42200 Czestochowa, Poland
关键词
IMAGE; SEGMENTATION; EDGE;
D O I
10.1109/BDCloud-SocialCom-SustainCom.2016.28
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In the case of building large convolutional neural networks, signal propagation speed is one of priority factors. Training large neural structures requires enormous time for achieving satisfying accuracy. In addition, the networks need to be learn by very large sets of good quality training images, which is another time-consuming factor. The paper presents a fast computing framework with some methods to optimize the signal propagation speed. We compare our implementation with the original OverFeat implementation.
引用
收藏
页码:118 / 123
页数:6
相关论文
共 50 条
  • [1] Embedded GPU Cluster Computing Framework for Inference of Convolutional Neural Networks
    Kain, Evan
    Wildenstein, Diego
    Pineda, Andrew C.
    [J]. 2019 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2019,
  • [2] Fast Algorithms for Convolutional Neural Networks
    Lavin, Andrew
    Gray, Scott
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 4013 - 4021
  • [3] Computing receptive fields of convolutional neural networks
    Araujo, André
    Norris, Wade
    Sim, Jack
    [J]. Distill, 2019, 4 (11):
  • [4] Hartley Stochastic Computing For Convolutional Neural Networks
    Mozafari, S. H.
    Clark, J. J.
    Gross, W. J.
    Meyer, B. H.
    [J]. 2021 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS 2021), 2021, : 235 - 240
  • [5] FAST GRAPH CONVOLUTIONAL RECURRENT NEURAL NETWORKS
    Kadambari, Sai Kiran
    Chepuri, Sundeep Prabhakar
    [J]. CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 467 - 471
  • [6] Fast Convolution Algorithm for Convolutional Neural Networks
    Kim, Tae Sun
    Bae, Jihoon
    Sunwoo, Myung Hoon
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2019), 2019, : 258 - 261
  • [7] A fusing framework of shortcut convolutional neural networks
    Zhang, Ting
    Waqas, Muhammad
    Liu, Zhaoying
    Tu, Shanshan
    Halim, Zahid
    Rehman, Sadaqat Ur
    Li, Yujian
    Han, Zhu
    [J]. INFORMATION SCIENCES, 2021, 579 : 685 - 699
  • [8] Complexity of Deep Convolutional Neural Networks in Mobile Computing
    Naeem, Saad
    Jamil, Noreen
    Khan, Habib Ullah
    Nazir, Shah
    [J]. COMPLEXITY, 2020, 2020
  • [9] A Survey of Convolutional Neural Networks on Edge with Reconfigurable Computing
    Vestias, Mario P.
    [J]. ALGORITHMS, 2019, 12 (08)
  • [10] Convolutional networks for fast, energy-efficient neuromorphic computing
    Esser, Steven K.
    Merolla, Paul A.
    Arthur, John V.
    Cassidy, Andrew S.
    Appuswamy, Rathinakumar
    Andreopoulos, Alexander
    Berg, David J.
    McKinstry, Jeffrey L.
    Melano, Timothy
    Barch, Davis R.
    di Nolfo, Carmelo
    Datta, Pallab
    Amir, Arnon
    Taba, Brian
    Flickner, Myron D.
    Modha, Dharmendra S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (41) : 11441 - 11446