Monolithic integration of DUV-induced waveguides into plastic microfluidic chip for optical manipulation

被引:7
|
作者
Khoury, M. [1 ,2 ]
Vannahme, C. [1 ]
Sorensen, K. T. [1 ]
Kristensen, A. [1 ]
Berg-Sorensen, K. [2 ]
机构
[1] Tech Univ Denmark, DTU Nanotech, Dept Micro & Nanotechnol, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, DTU Fys, Dept Phys, DK-2800 Lyngby, Denmark
关键词
Optical manipulation; DUV-induced waveguides; Optofluidics; All-polymer; Hot embossing; ON-A-CHIP; SYSTEMS; FORCE; EXCITATION; DESIGN; CELLS;
D O I
10.1016/j.mee.2014.02.022
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A monolithic polymer optofluidic chip for manipulation of microbeads in flow is demonstrated. On this chip, polymer waveguides induced by Deep UV lithography are integrated with microfluidic channels. The optical propagation losses of the waveguides are measured to be 0.66 +/- 0.13 dB/mm at a wavelength of lambda= 808 nm. An optimized bead tracking algorithm is implemented, allowing for determination of the optical forces acting on the particles. The algorithm features a spatio-temporal mapping of coordinates for uniting partial trajectories, without increased processing time. With an external laser power of 250 mW, a maximum scattering force of 0.84 pN is achieved for 5 mu m diameter polystyrene beads in water. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:5 / 9
页数:5
相关论文
共 50 条
  • [1] Monolithic integration of microfluidic channels and optical waveguides in silica on silicon
    Friis, Peter
    Hoppe, Karsten
    Leistiko, Otto
    Bo Mogensen, Klaus
    Hübner, Jörg
    Kutter, Jörg P.
    [J]. Applied Optics, 2001, 40 (34): : 6246 - 6251
  • [2] Monolithic integration of microfluidic channels and optical waveguides in silica on silicon
    Friis, P
    Hoppe, K
    Leistiko, O
    Mogensen, KB
    Hübner, J
    Kutter, JP
    [J]. APPLIED OPTICS, 2001, 40 (34) : 6246 - 6251
  • [3] Monolithic integration of microfluidic channels and optical waveguides using a photodefinable epoxy
    Ruano, JM
    Aguirregabiria, M
    Tijero, M
    Arroyo, M
    Garcia, J
    Berganzo, J
    Aramburu, I
    Blanco, FJ
    Mayora, K
    [J]. MEMS 2004: 17TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 2004, : 121 - 124
  • [4] Optical Waveguides for Microfluidic Integration
    Ram, Rajeev J.
    Lee, Kevin
    [J]. 2009 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1AND 2, 2009, : 371 - 372
  • [5] Monolithic integration of microfluidic channels, liquid-core waveguides, and silica waveguides on silicon
    Dumais, Patrick
    Callender, Claire L.
    Ledderhof, Christopher J.
    Noad, Julian P.
    [J]. APPLIED OPTICS, 2006, 45 (36) : 9182 - 9190
  • [6] PDMS microfluidic chip with integrated waveguides for optical detection
    Fleger, Markus
    Neyer, Andreas
    [J]. MICROELECTRONIC ENGINEERING, 2006, 83 (4-9) : 1291 - 1293
  • [7] A novel monolithic fabrication method for a plastic microfluidic chip with liquid interconnecting ports
    Lee, Bong-Kee
    Kwon, Tai Hun
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2010, 20 (10)
  • [8] Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements
    Kee, Jack Sheng
    Poenar, Daniel Puiu
    Neuzil, Pavel
    Yobas, Levent
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2008, 134 (02) : 532 - 538
  • [9] Joule heating-induced particle manipulation on a microfluidic chip
    Kunti, Golak
    Dhar, Jayabrata
    Bhattacharya, Anandaroop
    Chakraborty, Suman
    [J]. BIOMICROFLUIDICS, 2019, 13 (01)
  • [10] Plastic based Microfluidic Chip for Optical Diffusion Sensor using Laser-induced dielectrophoresis
    Okuwaki, Takuya
    Kamata, Makoto
    Taguchi, Yoshihiro
    Nagasaka, Yuji
    [J]. 2018 INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS (OMN), 2018, : 240 - 241