Nanometer-scale ion aggregates in aqueous electrolyte solutions: Guanidinium carbonate

被引:27
|
作者
Mason, P. E.
Neilson, G. W.
Kline, Steve R.
Dempsey, C. E.
Brady, J. W.
机构
[1] Cornell Univ, Dept Food Sci, Ithaca, NY 14853 USA
[2] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[3] Univ Bristol, Dept Biochem, Bristol BS8 1TD, Avon, England
[4] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2006年 / 110卷 / 27期
关键词
D O I
10.1021/jp0572028
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Neutron diffraction with isotopic substitution (NDIS) experiments and molecular dynamics (MD) simulations have been used to characterize the structure of aqueous guanidinium carbonate (Gdm(2)CO(3)) solutions. The MD simulations found very strong hetero-ion pairing in Gdm(2)CO(3) solution and were used to determine the best structural experiment to demonstrate this ion pairing. The NDIS experiments confirm the most significant feature of the MD simulation, which is the existence of strong hetero-ion pairing between the Gdm(+) and CO32- ions. The neutron structural data also support the most interesting feature of the MD simulation, that the hetero-ion pairing is sufficiently strong as to lead to nanometer-scale aggregation of the ions. The presence of such clustering on the nanometer length scale was then confirmed using small-angle neutron scattering experiments. Taken together, the experiment and simulation suggest a molecular-level explanation for the contrasting denaturant properties of guanidinium salts in solution.
引用
收藏
页码:13477 / 13483
页数:7
相关论文
共 50 条
  • [1] Nanometer-scale ion aggregates in aqueous electrolyte solutions: Guanidinium sulfate and guanidinium thiocyanate
    Mason, PE
    Dempsey, CE
    Neilson, GW
    Brady, JW
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (50): : 24185 - 24196
  • [2] Nanometer-Scale Correlations in Aqueous Salt Solutions
    Fetisov, Evgenii O.
    Mundy, Christopher J.
    Schenter, Gregory K.
    Benmore, Chris J.
    Fulton, John L.
    Kathmann, Shawn M.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (07): : 2598 - 2604
  • [3] Are Nanoscale Ion Aggregates Present in Aqueous Solutions of Guanidinium Salts?
    Hunger, Johannes
    Niedermayer, Stefan
    Buchner, Richard
    Hefter, Glenn
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (43): : 13617 - 13627
  • [4] Nanometer-scale linewidth fluctuations caused by polymer aggregates in resist films
    Yamaguchi, T
    Namatsu, H
    Nagase, M
    Yamazaki, K
    Kurihara, K
    [J]. APPLIED PHYSICS LETTERS, 1997, 71 (16) : 2388 - 2390
  • [6] Nanometer-scale pattern transfer using ion implantation
    Matsuura, N
    Simpson, TW
    McNorgan, CP
    Mitchell, IV
    Mei, XY
    Morales, P
    Ruda, HE
    [J]. THREE-DIMENSIONAL NANOENGINEERED ASSEMBLIES, 2003, 739 : 237 - 242
  • [7] Assembly and electrochemical characterization of nanometer-scale electrode|solid electrolyte interfaces
    Loster, Matthias
    Friedrich, K. Andreas
    Scherson, Daniel A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (37): : 18081 - 18087
  • [8] Nanometer-scale patterning of alkali halide surfaces by ion bombardment
    Saeed, S. R.
    Sinha, O. P.
    Krok, F.
    Szymonski, M.
    [J]. APPLIED SURFACE SCIENCE, 2008, 255 (05) : 1766 - 1775
  • [9] Characterization of Nanometer-Scale Porosity in Reservoir Carbonate Rock by Focused Ion Beam-Scanning Electron Microscopy
    Bera, Bijoyendra
    Gunda, Naga Siva Kumar
    Mitra, Sushanta K.
    Vick, Douglas
    [J]. MICROSCOPY AND MICROANALYSIS, 2012, 18 (01) : 171 - 178
  • [10] Generation of nanometer-scale crystals of hydrophobic compound from aqueous solution
    Maeda, K
    Hayashi, A
    Iimura, K
    Suzuki, M
    Hirota, M
    Asakuma, Y
    Fukui, K
    [J]. CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2005, 44 (09) : 941 - 947