Finite time blowup for Klein-Gordon-Schrodinger system

被引:8
|
作者
Shi, Qihong [1 ]
Zhang, Xiao-Bing [1 ]
Wang, Changyou [2 ]
Wang, Shu [3 ]
机构
[1] Lanzhou Univ Technol, Sch Math, Lanzhou 730050, Gansu, Peoples R China
[2] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610103, Sichuan, Peoples R China
[3] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
blowup results; KGS system; negative energy; virial identity; GLOBAL-SOLUTIONS; UP SOLUTIONS; EQUATION; EXISTENCE; FIELD; MODEL;
D O I
10.1002/mma.5621
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the blowup solutions to the Klein-Gordon-Schrodinger (KGS) system with power nonlinearity in spatial dimensions RN (N >= 2). Relying on a Lyapunov functional, we establish a perturbed virial-type identity and prove the existence of blowup solutions for the system with a negative energy and small mass. Moreover, we obtain a new finite-time blowup result of solutions to KGS system in the energy space by constructing a differential inequality.
引用
收藏
页码:3929 / 3941
页数:13
相关论文
共 50 条
  • [1] FINITE DIMENSIONALITY OF A KLEIN-GORDON-SCHRODINGER TYPE SYSTEM
    Poulou, Marilena N.
    Stavrakakis, Nikolaos M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2009, 2 (01): : 149 - 161
  • [2] On Klein-Gordon-Schrodinger Control System
    Wang, Quan-Fang
    2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 2253 - 2257
  • [3] Klein-Gordon-Schrodinger system: Dinucleon field
    Ran, Yanping
    Shi, Qihong
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (11)
  • [4] On the radius of spatial analyticity for the Klein-Gordon-Schrodinger system
    Ahn, Jaeseop
    Kim, Jimyeong
    Seo, Ihyeok
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 321 : 449 - 474
  • [5] Spatially singular solutions for Klein-Gordon-Schrodinger system
    Shi, Qihong
    Jia, Yaqian
    Cao, Jianxiong
    APPLIED MATHEMATICS LETTERS, 2022, 131
  • [6] Global attractor for Klein-Gordon-Schrodinger lattice system
    尹福其
    周盛凡
    殷苌茗
    肖翠辉
    Applied Mathematics and Mechanics(English Edition), 2007, (05) : 695 - 706
  • [7] Global attractor for Klein-Gordon-Schrodinger lattice system
    Yin, Fu-qi
    Zhou, Sheng-fan
    Yin, Chang-ming
    Xiao, Cui-hui
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2007, 28 (05) : 695 - 706
  • [8] Stability of standing waves for the Klein-Gordon-Schrodinger system
    Kikuchi, Hiroaki
    Ohta, Masahito
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (01) : 109 - 114
  • [9] Attractors for the Klein-Gordon-Schrodinger equation
    Wang, B
    Lange, H
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) : 2445 - 2457
  • [10] Random attractors for the stochastic damped Klein-Gordon-Schrodinger system
    Zhao, Xin
    Li, Yin
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,