ELEMENTS OF LARGE ORDER IN PRIME FINITE FIELDS

被引:13
|
作者
Chang, Mei-Chu [1 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
multiplicative order; multiplicative group; finite fields; additive combinatorics; ROOTS; EQUATIONS;
D O I
10.1017/S0004972712000810
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given f(x, y) is an element of Z[x, y] with no common components with x(a) - y(b) and x(a)y(b) - 1, we prove that for p sufficiently large, with C(f) exceptions, the solutions (x, y) is an element of (F) over bar (p) x (F) over bar (p) of f(x, y) = 0 satisfy ord(x) + ord(y) > c(log p/ log log p)(1/2), where c is a constant and ord(r) is the order of r in the multiplicative group (F) over bar (p)*. Moreover, for most p < N, N being a large number, we prove that, with C(f) exceptions, ord(x) + ord(y) > p(1/4+epsilon(p)), where epsilon(p) is an arbitrary function tending to 0 when p goes to infinity.
引用
收藏
页码:169 / 176
页数:8
相关论文
共 50 条
  • [1] Elements of large order on varieties over prime finite fields
    Chang, Mei-Chu
    Kerr, Bryce
    Shparlinski, Igor E.
    Zannier, Umberto
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2014, 26 (03): : 579 - 593
  • [2] Constructing elements of large order in finite fields
    Gathen, JVZ
    Shparlinski, I
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 1999, 1719 : 404 - 409
  • [3] An additive problem in finite fields with powers of elements of large multiplicative order
    Javier Cilleruelo
    Ana Zumalacárregui
    Revista Matemática Complutense, 2014, 27 : 501 - 508
  • [4] An additive problem in finite fields with powers of elements of large multiplicative order
    Cilleruelo, Javier
    Zumalacarregui, Ana
    REVISTA MATEMATICA COMPLUTENSE, 2014, 27 (02): : 501 - 508
  • [5] On elements of high order in finite fields
    Conflitti, A
    CRYPTOGRAPHY AND COMPUTATIONAL NUMBER THEORY, 2001, 20 : 11 - 14
  • [6] ON THE PROPORTION OF ELEMENTS OF PRIME ORDER IN FINITE SYMMETRIC GROUPS
    Praeger, Cheryl E.
    Suleiman, Enoch
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2024, 13 (03) : 251 - 256
  • [7] Elements of prime power order in residually finite groups
    Shumyatsky, P
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2005, 15 (03) : 571 - 576
  • [8] Automorphisms fixing elements of prime order in finite groups
    I. M. Isaacs
    Archiv der Mathematik, 1997, 68 : 359 - 366
  • [9] Automorphisms fixing elements of prime order in finite groups
    Isaacs, IM
    ARCHIV DER MATHEMATIK, 1997, 68 (05) : 359 - 366
  • [10] ON THE MINIMAL NUMBER OF SMALL ELEMENTS GENERATING FINITE PRIME FIELDS
    Munsch, Marc
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (02) : 177 - 184