A bootstrap test for the comparison of nonlinear time series

被引:2
|
作者
Dette, Holger [2 ]
Weissbach, Rafael [1 ]
机构
[1] Techn Univ Dortmund, Fak Stat, Inst Wirtschafts & Sozialstat, Dortmund, Germany
[2] Ruhr Univ Bochum, Fak Math, Lehrstuhl Stochast, D-4630 Bochum, Germany
关键词
2; REGRESSION-CURVES; NONPARAMETRIC REGRESSION; TERM STRUCTURE; EQUALITY; MODELS;
D O I
10.1016/j.csda.2008.11.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The difference between the regression functions of two stationary conditional heteroskedastic autoregressive time series is tested. The functions can be equal, or shifted, under the null hypothesis. Local linear estimation of the regression function results in observable residuals. Bootstrap residuals lead to a marked empirical process as test statistic and a Kolmogorov-Smirnov version is applied. The simulation study for linear, exponential or trigonometric regression functions with homoskedastic or heteroskedastic errors finds the rejection probability under the null hypothesis to be near the level. Comparing series with different combinations of linear, exponential and trigonometric functions, the rejection probability under the alternative yields mixed results. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1339 / 1349
页数:11
相关论文
共 50 条
  • [1] A bootstrap test for time series linearity
    Berg, Arthur
    Paparoditis, Efstathios
    Politis, Dimitris N.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (12) : 3841 - 3857
  • [2] Bootstrap of kernel smoothing in nonlinear time series
    Franke, J
    Kreiss, JP
    Mammen, E
    BERNOULLI, 2002, 8 (01) : 1 - 37
  • [3] Neural Network Sieve bootstrap for nonlinear time series
    Giordano, F
    LaRocca, M
    Perna, C
    NEURAL NETWORK WORLD, 2005, 15 (04) : 327 - 334
  • [4] Bootstrap prediction intervals for nonlinear time-series
    Haraki, Daisuke
    Suzuki, Tomoya
    Ikeguchi, Tohru
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2006, PROCEEDINGS, 2006, 4224 : 155 - 162
  • [5] A simple bootstrap test for time series regression models
    Li, DD
    JOURNAL OF NONPARAMETRIC STATISTICS, 2005, 17 (04) : 513 - 520
  • [6] Forecasting nonlinear time series with neural network sieve bootstrap
    Giordano, Francesco
    La Rocca, Michele
    Perna, Cira
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (08) : 3871 - 3884
  • [7] A bootstrap-based KPSS test for functional time series
    Chen, Yichao
    Pun, Chi Seng
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 174
  • [8] A bootstrap approach to test the conditional symmetry in time series models
    Perez-Alonso, Alicia
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (07) : 3484 - 3504
  • [9] Clustering nonlinear time series with neural network bootstrap forecast distributions
    La Rocca, Michele
    Giordano, Francesco
    Perna, Cira
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2021, 137 : 1 - 15
  • [10] Bootstrap procedures for variance breaks test in time series with a changing trend
    Jin, Hao
    Zhang, Si
    Zhang, Jinsuo
    Zhang, Shougang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (18) : 4609 - 4627