Natural convection during melting in vertical finned tube latent thermal energy storage systems

被引:106
|
作者
Vogel, J. [1 ]
Johnson, M. [1 ]
机构
[1] German Aerosp Ctr DLR, Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany
关键词
Heat transfer; Phase change material (PCM); Finned tube heat exchanger; Computational fluid dynamics (CFD); Convective enhancement factor; PHASE-CHANGE; PERFORMANCE ENHANCEMENT; HEAT SINK; FINS; SOLIDIFICATION; DESIGN;
D O I
10.1016/j.apenergy.2019.04.011
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Natural convection can have a major impact on the melting process during charging in a latent heat storage system. Heat transfer enhancement by natural convection depends strongly on the dimensions, material properties and boundary conditions of the storage system. In complex geometries, such as shell-and-tube storage systems with extended fins, a good approximation of the impact of natural convection on the melting process is very difficult. There are no correlations for such geometries, and simulations of these storage systems require extensive computational effort. In the present work, we analyzed the impact of natural convection in four vertical shell-and-tube extended fin systems with a common tube height. To investigate the influence of the tube height, one of the fins was additionally modeled with two further tube heights. We scaled the resulting liquid fraction evolutions into a dimensionless form and used a convective enhancement factor to assess the strength of natural convection. A linear fit function for the mean convective enhancement factor was derived to estimate the melting process considering natural convection. With it, natural convection may be incorporated into the design process of storage systems to optimize the charging time. The results indicate a negligible impact of natural convection in fins with a small tube spacing and a high fin fraction. There is a considerable impact from natural convection in fins designed with a large tube spacing and a low fin fraction. However, large fin heights lead to decreased heat transfer enhancement by natural convection.
引用
下载
收藏
页码:38 / 52
页数:15
相关论文
共 50 条
  • [1] Melting enhancement of PCM in a finned tube latent heat thermal energy storage
    Ahmed, Sameh
    Abderrahmane, Aissa
    Saeed, Abdulkafi Mohammed
    Guedri, Kamel
    Mourad, Abed
    Younes, Obai
    Botmart, Thongchai
    Shah, Nehad Ali
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Influence of natural convection during melting and solidification of paraffin in a longitudinally finned shell-and-tube latent thermal energy storage on the applicability of developed numerical models
    Kirincic, Mateo
    Trp, Anica
    Lenic, Kristian
    RENEWABLE ENERGY, 2021, 179 : 1329 - 1344
  • [3] Influence of natural convection during melting and solidification of paraffin in a longitudinally finned shell-and-tube latent thermal energy storage on the applicability of developed numerical models
    Kirincic, Mateo
    Trp, Anica
    Lenic, Kristian
    Renewable Energy, 2021, 179 : 1329 - 1344
  • [4] Author Correction: Melting enhancement of PCM in a finned tube latent heat thermal energy storage
    Sameh Ahmed
    Aissa Abderrahmane
    Abdulkafi Mohammed Saeed
    Kamel Guedri
    Abed Mourad
    Obai Younis
    Thongchai Botmart
    Nehad Ali Shah
    Scientific Reports, 12
  • [5] The error of neglecting natural convection in high temperature vertical shell-and-tube latent heat thermal energy storage systems
    Tehrani, S. Saeed Mostafavi
    Diarce, Gonzalo
    Taylor, Robert A.
    SOLAR ENERGY, 2018, 174 : 489 - 501
  • [6] Experimental and numerical characterization of natural convection in a vertical shell-and-tube latent thermal energy storage system
    Seddegh, Saeid
    Joybari, Mahmood Mastani
    Wang, Xiaolin
    Haghighat, Fariborz
    SUSTAINABLE CITIES AND SOCIETY, 2017, 35 : 13 - 24
  • [7] Melting characteristics of a longitudinally finned-tube horizontal latent heat thermal energy storage system
    Modi, Nishant
    Wang, Xiaolin
    Negnevitsky, Michael
    Cao, Feng
    SOLAR ENERGY, 2021, 230 : 333 - 344
  • [8] Numerical modeling of large-scale finned tube latent thermal energy storage systems
    Vogel, J.
    Keller, M.
    Johnson, M.
    JOURNAL OF ENERGY STORAGE, 2020, 29
  • [9] The negative effect of natural convection in a vertical shell and tube latent heat energy storage unit
    Wang, Leli
    Wang, Liangbi
    Wang, Ye
    APPLIED THERMAL ENGINEERING, 2024, 244
  • [10] Study of the melting performance of shell-and-tube latent heat thermal energy storage unit under the action of rotating finned tube
    Zheng, Zhang-Jing
    Sun, Yu
    Chen, Yang
    He, Chen
    Yin, Hang
    Xu, Yang
    JOURNAL OF ENERGY STORAGE, 2023, 62