Enhanced electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material by coating with LiAlO2 nanoparticles

被引:121
|
作者
Kim, Hyun-Soo [1 ]
Kim, Youngsik
Kim, Seong-Il
Martin, Steve W.
机构
[1] Korea Electrotechnol Res Inst, Battery Res Grp, Chang Won 641120, South Korea
[2] Iowa State Univ Sci & Technol, Dept Mat Sci & Engn, Ames, IA 50011 USA
关键词
substituted lithuim cobalt oxide; LiAlO2; nanoparticles; sol-gel method; rate capability; cycle life; lithuim-ion battery; LICOO2; PERFORMANCE; BEHAVIOR;
D O I
10.1016/j.jpowsour.2006.03.092
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface coating of LiNi1/3Co1/3Mn1/3O2 With LiAlO2 nanoparticles has been attempted to improve the electrochemical properties of these materials as cathodes in lithuim-ion batteries. The coating is undertaken by a sol-gel method that uses C9H21O3Al, LiOH center dot H2O and LiNi1/3Co1/3Mn1/3O2. X-ray diffraction analysis shows that the LiAlO2 is composed of both alpha- and beta-LiAlO2 phases. The average size of the particles is about 15 nm. The structure of LiNi1/3Co1/3Mn1/3O2 is not affected by the LiAlO2 nanoparticle coating. A 3 wt.% LiAlO2-coating increases the specific discharge capacity, provides excellent cycling performance (i.e. 96.7% capacity retention after 50 cycles at the 1 C rate) and improves the rate capability. By contrast, heavier coatings (5 wt.%) on LiNi1/3Co1/3Mn1/3O2 dramatically decrease both the discharge capacity and the rate capability, but enhance the cycle life. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:623 / 627
页数:5
相关论文
共 50 条
  • [1] Synthesis and Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2 Cathode Material
    Li, Lin
    Feng, Chuanqi
    Zheng, Hao
    He, Peixin
    Wang, Jiazhao
    JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (09) : 3508 - 3513
  • [2] Synthesis and Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2 Cathode Material
    Lin Li
    Chuanqi Feng
    Hao Zheng
    Peixin He
    Jiazhao Wang
    Journal of Electronic Materials, 2014, 43 : 3508 - 3513
  • [3] Electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material modified by coating with Al2O3 nanoparticles
    Araki, Kazuhiro
    Taguchi, Noboru
    Sakaebe, Hikari
    Tatsumi, Kuniaki
    Ogumi, Zempachi
    JOURNAL OF POWER SOURCES, 2014, 269 : 236 - 243
  • [4] Synthesis and electrochemical performance study of LiNi1/3Co1/3Mn1/3O2 cathode material
    Cheng, Xue-Lian
    Wang, Jin
    Wang, Zi-Gang
    Yang, Hui
    Gongneng Cailiao/Journal of Functional Materials, 2010, 41 (05): : 851 - 854
  • [5] Effect of Chlorine Doping on Structure and Electrochemical Properties of LiNi1/3CO1/3Mn1/3O2 Cathode Material
    Liu Shuixiang
    Zhang Hailang
    RARE METAL MATERIALS AND ENGINEERING, 2013, 42 : 296 - 300
  • [6] Deflagration Synthesis of Nanocrystalline LiNi1/3Co1/3Mn1/3O2 Cathode Material
    Li, Jiebin
    Xu, Youlong
    Du, Xianfeng
    Xiong, Lilong
    RECHARGEABLE LITHIUM AND LITHIUM ION BATTERIES, 2012, 41 (41): : 139 - 144
  • [7] Copper Impurity Effects on LiNi1/3Mn1/3Co1/3O2 Cathode Material
    Sa, Qina
    Heelan, Joseph A.
    Lu, Yuan
    Apelian, Diran
    Wang, Yan
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (37) : 20585 - 20590
  • [8] Improving the Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2 Cathode Material by LiF Modification
    Zhou, Sisi
    Zhang, Xianggong
    Zhang, Zhihao
    Liu, Songting
    Wang, Rui
    COATINGS, 2023, 13 (04)
  • [9] Vacuum-Drying of the LiNi1/3Co1/3Mn1/3O2 Cathode Material
    Zhao, Fan
    Han, Feng
    Zhang, Shi-wei
    Zhang, Zhi-jun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (02) : 639 - 647
  • [10] Synthesis and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode materials by electrospinning process
    Kang, Chung-Soo
    Son, Jong-Tae
    JOURNAL OF ELECTROCERAMICS, 2012, 29 (04) : 235 - 239