Systems-Wide High-Dimensional Data Acquisition and Informatics Using Structural Mass Spectrometry Strategies

被引:24
|
作者
Sherrod, Stacy D. [1 ]
McLean, John A. [1 ]
机构
[1] Vanderbilt Univ, Dept Chem, Ctr Innovat Technol, Vanderbilt Inst Chem Biol,Vanderbilt Inst Integra, Nashville, TN 37235 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
COLLISION CROSS-SECTIONS; ION MOBILITY; METABOLOMICS; IDENTIFICATION; LIPIDOMICS; SEPARATION; SIGNATURES; PHENOTYPE; TOOLS; CELLS;
D O I
10.1373/clinchem.2015.238261
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
BACKGROUND: Untargeted multiomics data sets are obtained for samples in systems, synthetic, and chemical biology by integrating chromatographic separations with ion mobility mass spectrometry (IM-MS) analysis. The data sets are interrogated using bioinformatics strategies to organize the data for identification prioritization. CONTENT: The use of big data approaches for data mining of massive data sets in systems-wide analyses is presented. Untargeted biological data across multiomics dimensions are obtained using a variety of chromatography strategies with structural MS. Separation timescales for different techniques and the resulting data deluge when combined with IM-MS are presented. Data mining self-organizing map strategies are used to rapidly filter the data, highlighting those features describing uniqueness to the query. Examples are provided in longitudinal analyses in synthetic biology and human liver exposure to acetaminophen, and in chemical biology for natural product discovery from bacterial biomes. CONCLUSIONS: Matching the separation timescales of different forms of chromatography with IM-MS provides sufficient multiomics selectivity to perform untargeted systems-wide analyses. New data mining strategies provide a means for rapidly interrogating these data sets for feature prioritization and discovery in a range of applications in systems, synthetic, and chemical biology. (C) 2015 American Association for Clinical Chemistry
引用
收藏
页码:77 / 83
页数:7
相关论文
共 50 条
  • [1] Constructing metabolic association networks using high-dimensional mass spectrometry data
    Koo, Imhoi
    Wei, Xiaoli
    Shi, Xue
    Zhou, Zhanxiang
    Kim, Seongho
    Zhang, Xiang
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2014, 138 : 193 - 202
  • [2] High-Dimensional Proteomic Characterization of Immune Cell Phenotypes with Data-Independent Acquisition Mass Spectrometry
    Dupuis, Nicholas
    Vowinckel, Jakob
    Treiber, Tobias
    Beeler, Kristina
    MOLECULAR THERAPY, 2019, 27 (04) : 293 - 293
  • [3] Comparison of classification methods that combine clinical data and high-dimensional mass spectrometry data
    Caroline Truntzer
    Elise Mostacci
    Aline Jeannin
    Jean-Michel Petit
    Patrick Ducoroy
    Hervé Cardot
    BMC Bioinformatics, 15
  • [4] High-dimensional data acquisition, computing, and visualization
    Chen, JX
    Nakano, A
    COMPUTING IN SCIENCE & ENGINEERING, 2003, 5 (02) : 12 - 13
  • [5] Comparison of classification methods that combine clinical data and high-dimensional mass spectrometry data
    Truntzer, Caroline
    Mostacci, Elise
    Jeannin, Aline
    Petit, Jean-Michel
    Ducoroy, Patrick
    Cardot, Herve
    BMC BIOINFORMATICS, 2014, 15
  • [6] Deep Proteomics Using Two Dimensional Data Independent Acquisition Mass Spectrometry
    Cho, Kyung-Cho
    Clark, David J.
    Schnaubelt, Michael
    Teo, Guo Ci
    Leprevost, Felipe Veiga
    Bocik, William
    Boja, Emily S.
    Hiltke, Tara
    Nesvizhskii, Alexey, I
    Zhang, Hui
    ANALYTICAL CHEMISTRY, 2020, 92 (06) : 4217 - 4225
  • [7] Design Strategies for High-Dimensional Electromagnetic Systems
    Jandhyala, Vikram
    Sathanur, Arun V.
    2012 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD), 2012, : 498 - 498
  • [8] DEIMoS: An Open-Source Tool for Processing High-Dimensional Mass Spectrometry Data
    Colby, Sean M.
    Chang, Christine H.
    Bade, Jessica L.
    Nunez, Jamie R.
    Blumer, Madison R.
    Orton, Daniel J.
    Bloodsworth, Kent J.
    Nakayasu, Ernesto S.
    Smith, Richard D.
    Ibrahim, Yehia M.
    Renslow, Ryan S.
    Metz, Thomas O.
    ANALYTICAL CHEMISTRY, 2022, 94 (16) : 6130 - 6138
  • [9] Phenotypic Mapping of Metabolic Profiles Using Self-Organizing Maps of High-Dimensional Mass Spectrometry Data
    Goodwin, Cody R.
    Sherrod, Stacy D.
    Marasco, Christina C.
    Bachmann, Brian O.
    Schramm-Sapyta, Nicole
    Wikswo, John P.
    McLean, John A.
    ANALYTICAL CHEMISTRY, 2014, 86 (13) : 6563 - 6571
  • [10] Mining the structural knowledge of high-dimensional medical data using Isomap
    Weng, S
    Zhang, C
    Lin, Z
    Zhang, X
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2005, 43 (03) : 410 - 412