Posterior properties under matching priors for generalized gamma distribution

被引:0
|
作者
Kang, Sang Gil [1 ]
Lee, Woo Dong [2 ]
Kim, Yongku [3 ]
机构
[1] Sangji Univ, Dept Comp & Data Inforamt, Wonju, South Korea
[2] Daegu Haany Univ, Dept Cosmeceut Engn, Gyongsan, South Korea
[3] Kyungpook Natl Univ, Dept Stat, Daegu, South Korea
基金
新加坡国家研究基金会;
关键词
Generalized gamma distribution; Matching prior; Overall reference prior;
D O I
10.1080/03610918.2019.1580725
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recently, the overall reference prior has been proposed for parameters of the generalized gamma distribution. As an alternative, here we develop a matching prior that provides the same coverage probability asymptotically as a Bayesian credible interval with the corresponding frequentist counterpart, and subsequently show that this matching prior yields proper posteriors. In addition, we find that the overall reference prior is not a first-order matching prior. Simulation studies show that the derived matching priors perform better than the overall reference prior in meeting the target coverage probabilities, and meets the target coverage probabilities well even for a small sample size.
引用
收藏
页码:1202 / 1216
页数:15
相关论文
共 50 条
  • [1] Posterior propriety of bivariate lomax distribution under objective priors
    Kang, Sang Gil
    Lee, Woo Dong
    Kim, Yongku
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (09) : 2201 - 2209
  • [2] Bayesian analysis of the inverse generalized gamma distribution using objective priors
    Ramos, Pedro L.
    Mota, Alex L.
    Ferreira, Paulo H.
    Ramos, Eduardo
    Tomazella, Vera L. D.
    Louzada, Francisco
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (04) : 786 - 816
  • [3] Bayesian estimation of generalized exponential distribution under noninformative priors
    Moala, Fernando Antonio
    Achcar, Jorge Alberto
    Damasceno Tomazella, Vera Lucia
    XI BRAZILIAN MEETING ON BAYESIAN STATISTICS (EBEB 2012), 2012, 1490 : 230 - 242
  • [4] Bayesian analysis of the generalized gamma distribution using non-informative priors
    Ramos, Pedro L.
    Achcar, Jorge A.
    Moala, Fernando A.
    Ramos, Eduardo
    Louzada, Francisco
    STATISTICS, 2017, 51 (04) : 824 - 843
  • [5] Concentration rate and consistency of the posterior distribution for selected priors under monotonicity constraints
    Salomond, Jean-Bernard
    ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 1380 - 1404
  • [6] THE WEIGHTED GENERALIZED GAMMA DISTRIBUTION IS THE GENERALIZED GAMMA DISTRIBUTION
    Nadarajah, Saralees
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2016, 30 (02) : 298 - 299
  • [7] Gamma Generalized Logistic Distribution: Properties and Applications
    Kumar, C. Satheesh
    Manju, L.
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2022, 21 (03): : 155 - 174
  • [8] Extremal properties of moment for generalized gamma distribution
    Huang, Jianwen
    Liu, Xinling
    SCIENCEASIA, 2023, 49 (03): : 377 - 385
  • [9] Gamma Generalized Logistic Distribution: Properties and Applications
    C. Satheesh Kumar
    L. Manju
    Journal of Statistical Theory and Applications, 2022, 21 : 155 - 174
  • [10] Bayesian Estimation of Erlang Distribution under Different Generalized Truncated Distributions as Priors
    Khan, Adil H.
    Jan, T. R.
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2012, 11 (02) : 416 - 442