APPLICATION OF STATISTICAL NEURONAL NETWORKS FOR DIAGNOSTICS OF INDUCTION MACHINE ROTOR FAULTS

被引:0
|
作者
Marmouch, Sameh [1 ]
Aroui, Tarek [1 ]
Koubaa, Yassine [2 ]
机构
[1] Univ Sousse, Natl Engn Sch Sousse, Elect Engn Dept, Sousse, Tunisia
[2] Univ Sfax, Natl Engn Sch Sfax, Elect Engn Dept, Sfax, Tunisia
关键词
induction machines; analysis motor current signature analysis; radial basis functions neuronal network; probabilistic neuronal network;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Induction machines are extensively used in industries and are subject to unexpected breakdowns. It is necessary, therefore, to prevent them from such breakdown through the maintenance that works according to a well-trained planning. A considerable number of diagnosis techniques have been used such as Motor Current Signature Analysis (MCSA), Axial Flux Monitoring and Vibration Monitoring. This paper shows the effectiveness of the artificial neuronal network (radial basis function neuronal network and the probabilistic neuronal network) basis on MCSA for rotor faults diagnosis.
引用
收藏
页码:199 / 204
页数:6
相关论文
共 50 条
  • [1] Application of Feedforward Neural Network for Induction Machine Rotor Faults Diagnostics using Stator Current
    Aroui, T.
    Koubaa, Y.
    Toumi, A.
    [J]. JOURNAL OF ELECTRICAL SYSTEMS, 2007, 3 (04) : 213 - 226
  • [2] NEURAL NETWORKS AIDED ONLINE DIAGNOSTICS OF INDUCTION-MOTOR ROTOR FAULTS
    FILIPPETTI, F
    FRANCESCHINI, G
    TASSONI, C
    [J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1995, 31 (04) : 892 - 899
  • [3] Investigation of Induction Machine with Rotor-Bar Faults
    Schreier, Ludek
    Chomat, Miroslav
    [J]. 2019 19TH INTERNATIONAL CONFERENCE ON ELECTRICAL DRIVES & POWER ELECTRONICS (EDPE), 2019, : 12 - 17
  • [4] Induction Machines with Rotor Faults: Analysis of the Physical Quantities for Different Operating Conditions and Machine Sizes for Improved Diagnostics
    Concari, Carlo
    Pietrini, Giorgio
    Soldati, Alessandro
    Tassoni, Carla
    Toscani, Andrea
    Franceschini, Giovanni
    [J]. 2018 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION (SPEEDAM), 2018, : 208 - 215
  • [5] Conditioning of a statistical indicator for the detection of an asynchronous machine rotor faults
    Ngote, Nabil
    Guedira, Said
    Cherkaoui, Mohamed
    [J]. MECHANICS & INDUSTRY, 2012, 13 (03) : 197 - 203
  • [6] Diagnostics of Interior PM Machine Rotor Faults Based on EMF Harmonics
    Radwan-Praglowska, Natalia
    Wegiel, Tomasz
    [J]. ENERGIES, 2024, 17 (09)
  • [7] Stator Current Demodulation for Induction Machine Rotor Faults Diagnosis
    El Bouchikhi, El Houssin
    Choqueuse, Vincent
    Benbouzid, Mohamed
    Antonino-Daviu, Jose A.
    [J]. 2014 INTERNATIONAL CONFERENCE ON GREEN ENERGY, 2014, : 176 - 181
  • [8] Analysis of stator and rotor currents and torque of induction machine with rotor-bar faults
    Schreier, L.
    Bendl, J.
    Chomat, M.
    [J]. ELECTRICAL ENGINEERING, 2021, 103 (01) : 519 - 528
  • [9] Analysis of stator and rotor currents and torque of induction machine with rotor-bar faults
    L. Schreier
    J. Bendl
    M. Chomat
    [J]. Electrical Engineering, 2021, 103 : 519 - 528
  • [10] Diagnostics of induction machines with incipient rotor cage faults using the neutral voltage
    Khezzar, A.
    Oumaamar, M. E. K.
    [J]. INTERNATIONAL REVIEW OF ELECTRICAL ENGINEERING-IREE, 2007, 2 (06): : 842 - 848