Influence of the catalyst and polymerization conditions on the long-chain branching of metallocene-catalyzed polyethenes

被引:0
|
作者
Kokko, E [1 ]
Malmberg, A [1 ]
Lehmus, P [1 ]
Löfgren, B [1 ]
Seppälä, JV [1 ]
机构
[1] Helsinki Univ Technol, Dept Chem Technol, FIN-02015 Hut, Finland
关键词
long-chain branching; polyethene; metallocene catalyst; rheological properties; chain-transfer mechanism; end-group;
D O I
10.1002/(SICI)1099-0518(20000115)38:2<376::AID-POLA12>3.3.CO;2-X
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A study was made on the effects of polymerization conditions on the long-chain branching, molecular weight, and end-group types of polyethene produced with the metallocene-catalyst systems Et[Ind](2)ZrCl2/MAO, Et[IndH(4)](2)ZrCl2/MAO, and (n-BuCp)(2)ZrCl2/MAO. Long-chain branching in the polyethenes, as measured by dynamic rheometry, depended heavily on the catalyst and polymerization conditions. In a semibatch flow reactor, the level of branching in the polyethenes produced with Et[Ind](2)ZrCl2/MAO increased as the ethene concentration decreased or the polymerization time increased. The introduction of hydrogen or comonomer suppressed branching. Under similar polymerization conditions, the two other catalyst systems, (n-BuCp)(2)ZrCl2ZrCl2/MAO and Et[IndH(4)](2)ZrCl2/MAO, produced linear or only slightly branched polyethene. On the basis of an end-group analysis by FTIR and molecular weight analysis by GPC, we concluded that a chain transfer to ethene was the prevailing termination mechanism with Et[Ind](2)ZrCl2/MAO at 80 degrees C in toluene. For the other catalyst systems, beta-H elimination dominated at low ethene concentrations. (C) 2000 John Wiley & Sons, Inc.
引用
收藏
页码:376 / 388
页数:13
相关论文
共 50 条
  • [1] Detecting very low levels of long-chain branching in metallocene-catalyzed polyethylenes
    Florian J. Stadler
    [J]. Rheologica Acta, 2012, 51 : 821 - 840
  • [2] Detecting very low levels of long-chain branching in metallocene-catalyzed polyethylenes
    Stadler, Florian J.
    [J]. RHEOLOGICA ACTA, 2012, 51 (09) : 821 - 840
  • [3] Modeling the linear viscoelastic properties of metallocene-catalyzed high density polyethylenes with long-chain branching
    Park, SJ
    Larson, RG
    [J]. JOURNAL OF RHEOLOGY, 2005, 49 (02) : 523 - 536
  • [4] Long-chain branching in metallocene-catalyzed polyethylenes investigated by low oscillatory shear and uniaxial extensional rheometry
    Malmberg, A
    Gabriel, C
    Steffl, T
    Münstedt, H
    Löfgren, B
    [J]. MACROMOLECULES, 2002, 35 (03) : 1038 - 1048
  • [5] Analytical and rheological characterization of long-chain branched metallocene-catalyzed ethylene homopolymers
    Gabriel, C
    Kokko, E
    Löfgren, B
    Seppälä, J
    Münstedt, H
    [J]. POLYMER, 2002, 43 (24) : 6383 - 6390
  • [6] Comprehensive dynamic model for the calculation of the molecular weight and long chain branching distributions in metallocene-catalyzed ethylene polymerization reactors
    Yiannoulakis, H
    Yiagopoulos, A
    Pladis, P
    Kiparissides, C
    [J]. MACROMOLECULES, 2000, 33 (07) : 2757 - 2766
  • [7] Numerical description of shear viscosity functions of long-chain branched metallocene-catalyzed polyethylenes
    Stadler, Florian J.
    Muenstedt, Helmut
    [J]. JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2008, 151 (1-3) : 129 - 135
  • [8] Rheology of metallocene-catalyzed polyethylenes - The effects of branching
    Bin Wadud, SE
    Baird, DG
    [J]. ANTEC '99: PLASTICS BRIDGING THE MILLENNIA, CONFERENCE PROCEEDINGS, VOLS I-III: VOL I: PROCESSING; VOL II: MATERIALS; VOL III: SPECIAL AREAS;, 1999, : 1200 - 1204
  • [9] Long chain branching in ethylene polymerization using constrained geometry metallocene catalyst
    Wang, WJ
    Yan, DJ
    Charpentier, PA
    Zhu, SP
    Hamielec, AE
    Sayer, BG
    [J]. MACROMOLECULAR CHEMISTRY AND PHYSICS, 1998, 199 (11) : 2409 - 2416
  • [10] Long chain branching in ethylene polymerization using binary homogeneous metallocene catalyst system
    Wang, WJ
    Yan, DJ
    Zhu, SP
    Hamielec, AE
    [J]. POLYMER REACTION ENGINEERING, 1999, 7 (03): : 327 - 346