Diffusion in smooth Hamiltonian systems

被引:5
|
作者
Vecheslavov, VV [1 ]
Chirikov, BV [1 ]
机构
[1] Russian Acad Sci, Budker Inst Nucl Phys, Siberian Div, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Elementary Particle; Quantum Field Theory; Hamiltonian System; Diffusion Rate; Dimensionless Variable;
D O I
10.1134/1.1499913
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A family of models determined by a smooth canonical 2D-map that depends on two parameters is studied. Preliminary results of numerical experiments are reported; they are evidence of substantial suppression of global diffusion in a wide range of perturbation values. This effect is caused by the little-known phenomenon of the conservation of resonance separatrices and other invariant curves under the conditions of strong local dynamic chaos. Such a total suppression of diffusion occurs although invariant curves are only conserved for a countable zero-measure set of parameter values. Simple refined estimates of diffusion rates in smooth systems without invariant curves were obtained and numerically substantiated. The principal boundary of diffusion suppression in a family of models with invariant curves was described by a semiempirical equation in dimensionless variables. The results were subjected to a statistical analysis, and an integral distribution for diffusion suppression probability was obtained. (C) 2002 MAIK "Nauka / Interperiodica".
引用
收藏
页码:154 / 165
页数:12
相关论文
共 50 条
  • [1] Diffusion in smooth Hamiltonian systems
    V. V. Vecheslavov
    B. V. Chirikov
    [J]. Journal of Experimental and Theoretical Physics, 2002, 95 : 154 - 165
  • [2] Diffusion in Hamiltonian systems
    Kozlov, VV
    Moshchevitin, NG
    [J]. CHAOS, 1998, 8 (01) : 245 - 247
  • [3] DIFFUSION IN HAMILTONIAN QUANTUM SYSTEMS
    De Roeck, Wojciech
    [J]. MATHEMATICAL RESULTS IN QUANTUM PHYSICS, 2011, : 199 - 202
  • [4] Smooth Hamiltonian Systems with Soft Impacts
    Kloc, M.
    Rom-Kedar, V.
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2014, 13 (03): : 1033 - 1059
  • [5] On the chaotic diffusion in multidimensional Hamiltonian systems
    P. M. Cincotta
    C. M. Giordano
    J. G. Martí
    C. Beaugé
    [J]. Celestial Mechanics and Dynamical Astronomy, 2018, 130
  • [6] Detection of Arnold diffusion in Hamiltonian systems
    Lega, E
    Guzzo, M
    Froeschlé, C
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2003, 182 (3-4) : 179 - 187
  • [7] On the chaotic diffusion in multidimensional Hamiltonian systems
    Cincotta, P. M.
    Giordano, C. M.
    Marti, J. G.
    Beauge, C.
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2018, 130 (01):
  • [8] Geometric integrators for piecewise smooth Hamiltonian systems
    Chartier, Philippe
    Faou, Erwan
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (02): : 223 - 241
  • [9] Basins of attraction in piecewise smooth Hamiltonian systems
    Lai, YC
    He, DR
    Jiang, YM
    [J]. PHYSICAL REVIEW E, 2005, 72 (02):
  • [10] On diffusion in high-dimensional Hamiltonian systems
    Bourgain, J
    Kaloshin, V
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 229 (01) : 1 - 61