On certain anisotropic elliptic equations arising in congested optimal transport: Local gradient bounds

被引:22
|
作者
Brasco, Lorenzo [1 ]
Carlier, Guillaume [2 ]
机构
[1] Aix Marseille Univ, LATP, F-13453 Marseille, France
[2] Univ Paris 09, CEREMADE, F-75775 Paris 16, France
关键词
Degenerate elliptic equations; anisotropic problems; traffic congestion; LIPSCHITZ REGULARITY; EIGENVALUE PROBLEM; MINIMIZERS; EXISTENCE; INTEGRALS; CALCULUS; INFINITY;
D O I
10.1515/acv-2013-0007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by applications to congested optimal transport problems, we prove higher integrability results for the gradient of solutions to some anisotropic elliptic equations, exhibiting a wide range of degeneracy. The model case we have in mind is the following: partial derivative(x) [(vertical bar u(x)vertical bar - delta(1))(+)(q-1) u(x)/vertical bar u(x vertical bar)] + partial derivative(y) [(vertical bar u(y)vertical bar - delta(2))(+)(q-1) u(y)/vertical bar u(y vertical bar)] = f, for 2 <= q < infinity and non-negative delta(1), delta(2). Here (center dot)(+) stands for the positive part. We prove that if f is an element of L-loc(infinity), then del(u) is an element of L-loc(r) for every r >= 1.
引用
收藏
页码:379 / 407
页数:29
相关论文
共 50 条