A Black Carbon-Tracer Method for Estimating Cooking Organic Aerosol From Aerosol Mass Spectrometer Measurements

被引:19
|
作者
He, Yao [1 ,2 ]
Sun, Yele [1 ,2 ,3 ]
Wang, Qingqing [1 ]
Zhou, Wei [1 ,2 ]
Xu, Weiqi [1 ,2 ]
Zhang, Yunjiang [4 ]
Xie, Conghui [1 ,2 ]
Zhao, Jian [1 ,2 ]
Du, Wei [1 ,2 ,5 ]
Qiu, Yanmei [1 ,2 ]
Le, Lu [1 ,2 ]
Fu, Pingqing [2 ,6 ]
Wang, Zifa [1 ,2 ]
Worsnop, Douglas R. [7 ]
机构
[1] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Atmospher Boundary Layer Phys & Atm, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing, Peoples R China
[3] Chinese Acad Sci, Ctr Excellence Reg Atmospher Environm, Inst Urban Environm, Xiamen, Fujian, Peoples R China
[4] Inst Natl Environm Ind & Risques, Verneuil En Halatte, France
[5] Univ Helsinki, Fac Sci, Inst Atmospher & Earth Syst Res Phys, Helsinki, Finland
[6] Tianjin Univ, Inst Surface Earth Syst Sci, Tianjin, Peoples R China
[7] Aerodyne Res Inc, Billerica, MA USA
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Cooking organic aerosol; aerosol mass spectrometer; Black carbon; Primary organic aerosol; YANGTZE-RIVER DELTA; POSITIVE MATRIX FACTORIZATION; CHEMICAL SPECIATION MONITOR; FINE PARTICULATE MATTER; AIR-POLLUTION SOURCES; NEW-YORK-CITY; SOURCE APPORTIONMENT; SUBMICRON AEROSOLS; PARTICLE COMPOSITION; SEASONAL-VARIATIONS;
D O I
10.1029/2019GL084092
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Cooking organic aerosol (COA) constitutes a considerable fraction of organic aerosol (OA) in urban environments, yet it is often challenging to resolve COA in summer through positive matrix factorization of unit mass resolution spectra of OA from aerosol mass spectrometer measurements. Here we developed a black carbon-tracer method for estimating COA in summer. The estimated COA agreed reasonably well with those from other methods. This method can also be applied to other seasons and megacities without substantial emissions from biomass burning and coal combustion. Globally, much higher COA concentrations in China and India than those in North America and Europe were observed, while the COA contributions were comparable (15.5-20%), highlighting the importance of COA in urban areas. Considering the rapidly increased aerosol mass spectrometer measurements worldwide, this method has significant implications for a better source apportionment of OA and also benefits the health studies associated with cooking exposure. Plain Language Summary Cooking is one of the most important primary sources in urban environments and may have a significant impact on premature mortality in densely populated areas. While aerosol mass spectrometer is capable of measuring cooking organic aerosol (COA) in real time, it is often challenging to separate it from traffic-related primary emissions, especially in summer. Here we found that black carbon is a good tracer to separate traffic and COA in the absence of biomass burning and coal combustion emissions. The successful applications of the black carbon-tracer method to Beijing and Nanjing for COA estimates highlight its wide implications for better source apportionment of organic aerosol and future exposure studies in urban areas.
引用
收藏
页码:8474 / 8483
页数:10
相关论文
共 50 条
  • [1] Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data
    Mohr, C.
    DeCarlo, P. F.
    Heringa, M. F.
    Chirico, R.
    Slowik, J. G.
    Richter, R.
    Reche, C.
    Alastuey, A.
    Querol, X.
    Seco, R.
    Penuelas, J.
    Jimenez, J. L.
    Crippa, M.
    Zimmermann, R.
    Baltensperger, U.
    Prevot, A. S. H.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (04) : 1649 - 1665
  • [2] Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements
    Sun, Y. L.
    Zhang, Q.
    Schwab, J. J.
    Yang, T.
    Ng, N. L.
    Demerjian, K. L.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (18) : 8537 - 8551
  • [3] A review of aerosol chemistry in Asia: insights from aerosol mass spectrometer measurements
    Zhou, Wei
    Xu, Weiqi
    Kim, Hwajin
    Zhang, Qi
    Fu, Pingqing
    Worsnop, Douglas R.
    Sun, Yele
    [J]. ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 2020, 22 (08) : 1616 - 1653
  • [4] Aerosol Measurements by Soot Particle Aerosol Mass Spectrometer: a Review
    Zhang, Yunjiang
    Wang, Junfeng
    Cui, Shijie
    Huang, Dan Dan
    Ge, Xinlei
    [J]. CURRENT POLLUTION REPORTS, 2020, 6 (04) : 440 - 451
  • [5] Aerosol Measurements by Soot Particle Aerosol Mass Spectrometer: a Review
    Yunjiang Zhang
    Junfeng Wang
    Shijie Cui
    Dan Dan Huang
    Xinlei Ge
    [J]. Current Pollution Reports, 2020, 6 : 440 - 451
  • [6] Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements
    Hu, W. W.
    Campuzano-Jost, P.
    Palm, B. B.
    Day, D. A.
    Ortega, A. M.
    Hayes, P. L.
    Krechmer, J. E.
    Chen, Q.
    Kuwata, M.
    Liu, Y. J.
    de Sa, S. S.
    McKinney, K.
    Martin, S. T.
    Hu, M.
    Budisulistiorini, S. H.
    Riva, M.
    Surratt, J. D.
    St Clair, J. M.
    Isaacman-Van Wertz, G.
    Yee, L. D.
    Goldstein, A. H.
    Carbone, S.
    Brito, J.
    Artaxo, P.
    de Gouw, J. A.
    Koss, A.
    Wisthaler, A.
    Mikoviny, T.
    Karl, T.
    Kaser, L.
    Jud, W.
    Hansel, A.
    Docherty, K. S.
    Alexander, M. L.
    Robinson, N. H.
    Coe, H.
    Allan, J. D.
    Canagaratna, M. R.
    Paulot, F.
    Jimenez, J. L.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (20) : 11807 - 11833
  • [7] Aerosol organic-mass-to-organic-carbon ratio measurements
    Russell, LM
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (13) : 2982 - 2987
  • [8] Aerosol mass spectrometer constraint on the global secondary organic aerosol budget
    Spracklen, D. V.
    Jimenez, J. L.
    Carslaw, K. S.
    Worsnop, D. R.
    Evans, M. J.
    Mann, G. W.
    Zhang, Q.
    Canagaratna, M. R.
    Allan, J.
    Coe, H.
    McFiggans, G.
    Rap, A.
    Forster, P.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (23) : 12109 - 12136
  • [9] Aerosol organic-mass-to-organic-carbon ratio measurements.
    Russell, LM
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U817 - U818
  • [10] Measurements of secondary organic aerosol from oxidation of cycloalkenes, terpenes, and m-xylene using an Aerodyne aerosol mass spectrometer
    Bahreini, R
    Keywood, MD
    Ng, NL
    Varutbangkul, V
    Gao, S
    Flagan, RC
    Seinfeld, JH
    Worsnop, DR
    Jimenez, JL
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (15) : 5674 - 5688