Neural Population Dynamics Underlying Motor Learning Transfer

被引:73
|
作者
Vyas, Saurabh [1 ]
Even-Chen, Nir [2 ,5 ]
Stavisky, Sergey D. [2 ,3 ]
Ryu, Stephen I. [2 ,8 ]
Nuyujukian, Paul [1 ,2 ,3 ,5 ,6 ]
Shenoy, Krishna V. [1 ,2 ,4 ,5 ,6 ,7 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Neurosurg, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Neurobiol, Stanford, CA 94305 USA
[5] Stanford Univ, Bio X Program, Stanford, CA 94305 USA
[6] Stanford Univ, Stanford Neurosci Inst, Stanford, CA 94305 USA
[7] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA
[8] Palo Alto Med Fdn, Palo Alto, CA 94301 USA
基金
美国国家卫生研究院;
关键词
BRAIN-COMPUTER INTERFACE; NEUROPROSTHETIC CONTROL; MENTAL REHEARSAL; CORTICAL CONTROL; ARM MOVEMENTS; ADAPTATION; CORTEX; FEEDBACK; IMAGERY; STROKE;
D O I
10.1016/j.neuron.2018.01.040
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks helped evaluate whether and how cortical changes resulting from "covert rehearsal'' affect overt performance. We found that covert learning indeed transfers to overt performance and is accompanied by systematic population-level changes in motor preparatory activity. Current models of motor cortical function ascribe motor preparation to achieving initial conditions favorable for subsequent movement-period neural dynamics. We found that covert and overt contexts share these initial conditions, and covert rehearsal manipulates them in a manner that persists across context changes, thus facilitating overt motor learning. This transfer learning mechanism might provide new insights into other covert processes like mental rehearsal.
引用
收藏
页码:1177 / +
页数:13
相关论文
共 50 条
  • [1] Neural Population Dynamics Underlying Expected Value Computation
    Yamada, Hiroshi
    Imaizumi, Yuri
    Matsumoto, Masayuki
    [J]. JOURNAL OF NEUROSCIENCE, 2021, 41 (08): : 1684 - 1698
  • [2] Population Clocks: Motor Timing with Neural Dynamics
    Buonomano, Dean V.
    Laje, Rodrigo
    [J]. SPACE, TIME AND NUMBER IN THE BRAIN: SEARCHING FOR THE FOUNDATIONS OF MATHEMATICAL THOUGHT: AN ATTENTION AND PERFORMANCE SERIES VOLUME, 2011, : 71 - 85
  • [3] Population clocks: motor timing with neural dynamics
    Buonomano, Dean V.
    Laje, Rodrigo
    [J]. TRENDS IN COGNITIVE SCIENCES, 2010, 14 (12) : 520 - 527
  • [4] Neural Correlates of Motor Learning, Transfer of Learning, and Learning to Learn
    Seidler, Rachael D.
    [J]. EXERCISE AND SPORT SCIENCES REVIEWS, 2010, 38 (01): : 3 - 9
  • [5] Quantal neural mechanisms underlying movement execution and motor learning
    Delgado-Garcia, JM
    Gruart, A
    Domingo, JA
    Trigo, JA
    [J]. BIOLOGICAL AND ARTIFICIAL COMPUTATION: FROM NEUROSCIENCE TO TECHNOLOGY, 1997, 1240 : 124 - 132
  • [6] Neural mechanism underlying the transsynaptic shift of memory trace in motor learning
    Nagao, Soichi
    Shutoh, Fumihiro
    Ohki, Masafumi
    [J]. CEREBELLUM, 2006, 5 (04): : 297 - 298
  • [7] Neural dynamics underlying associative learning in the dorsal and ventral hippocampus
    Biane, Jeremy S.
    Ladow, Max A.
    Stefanini, Fabio
    Boddu, Sayi P.
    Fan, Austin
    Hassan, Shazreh
    Dundar, Naz
    Apodaca-Montano, Daniel L.
    Zhou, Lexi Zichen
    Fayner, Varya
    Woods, Nicholas I.
    Kheirbek, Mazen A.
    [J]. NATURE NEUROSCIENCE, 2023, 26 (05) : 798 - 809
  • [8] Neural mechanism underlying the transsynaptic shift of memory trace in motor learning
    Soichi Nagao
    Fumihiro Shutoh
    Masafumi Ohki
    [J]. The Cerebellum, 2006, 5 : 297 - 298
  • [9] Neural dynamics underlying associative learning in the dorsal and ventral hippocampus
    Jeremy S. Biane
    Max A. Ladow
    Fabio Stefanini
    Sayi P. Boddu
    Austin Fan
    Shazreh Hassan
    Naz Dundar
    Daniel L. Apodaca-Montano
    Lexi Zichen Zhou
    Varya Fayner
    Nicholas I. Woods
    Mazen A. Kheirbek
    [J]. Nature Neuroscience, 2023, 26 : 798 - 809
  • [10] Inferring Latent Dynamics Underlying Neural Population Activity via Neural Differential Equations
    Kim, Timothy Doyeon
    Luo, Thomas Zhihao
    Pillow, Jonathan W.
    Brody, Carlos D.
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139