Linear mixed models based on skew scale mixtures of normal distributions

被引:6
|
作者
Ferreira, Clecio S. [1 ]
Bolfarine, Heleno [2 ]
Lachos, Victor H. [3 ]
机构
[1] Univ Fed Juiz de Fora, Dept Stat, Juiz De Fora, Brazil
[2] Univ Sao Paulo, Dept Stat, Sao Paulo, SP, Brazil
[3] Univ Connecticut, Dept Stat, Storrs, CT 06269 USA
关键词
EM algorithm; Linear mixed models; Local influence analysis; Skew scale mixtures of normal distributions; LIKELIHOOD-BASED INFERENCE; LOCAL INFLUENCE; MAXIMUM-LIKELIHOOD; INCOMPLETE-DATA;
D O I
10.1080/03610918.2020.1827265
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Scale mixtures of normal distributions are useful for statistical procedures involving symmetric and heavy-tailed data. Ferreira, Lachos, and Bolfarine (2016) defined a multivariate skewed version of these distributions that offers much-needed flexibility by combining both skewness and heavy tails. In this work, we develop a linear mixed model based on skew scale mixtures of normal distributions, with emphasis on the skew Student-tnormal, skew-slash and skew-contaminated normal distributions. Using the hierarchical structure of the model, we develop maximum likelihood estimation of the model parameters via the expectation-maximization (EM) algorithm. In addition, the standard errors are obtained via the approximate information matrix and the local influence analysis is explored under some perturbation schemes. To examine the performance and the usefulness of the proposed method, we present simulation studies and analyze a real dataset.
引用
收藏
页码:7194 / 7214
页数:21
相关论文
共 50 条
  • [1] Linear censored regression models with skew scale mixtures of normal distributions
    Guzman, Daniel C. F.
    Ferreira, Clecio S.
    Zeller, Camila B.
    [J]. JOURNAL OF APPLIED STATISTICS, 2021, 48 (16) : 3060 - 3085
  • [2] Nonlinear regression models based on scale mixtures of skew-normal distributions
    Garay, Aldo M.
    Lachos, Victor H.
    Abanto-Valle, Carlos A.
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2011, 40 (01) : 115 - 124
  • [3] Nonlinear regression models based on scale mixtures of skew-normal distributions
    Aldo M. Garay
    Víctor H. Lachos
    Carlos A. Abanto-Valle
    [J]. Journal of the Korean Statistical Society, 2011, 40 : 115 - 124
  • [4] Approximate Inferences for Nonlinear Mixed Effects Models with Scale Mixtures of Skew-Normal Distributions
    Fernanda L. Schumacher
    Dipak K. Dey
    Victor H. Lachos
    [J]. Journal of Statistical Theory and Practice, 2021, 15
  • [5] Approximate Inferences for Nonlinear Mixed Effects Models with Scale Mixtures of Skew-Normal Distributions
    Schumacher, Fernanda L.
    Dey, Dipak K.
    Lachos, Victor H.
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2021, 15 (03)
  • [6] Likelihood-based inference for censored linear regression models with scale mixtures of skew-normal distributions
    Mattos, Thalita do Bem
    Garay, Aldo M.
    Lachos, Victor H.
    [J]. JOURNAL OF APPLIED STATISTICS, 2018, 45 (11) : 2039 - 2066
  • [7] Bayesian analysis of censored linear regression models with scale mixtures of skew-normal distributions
    Massuia, Monique B.
    Garay, Aldo M.
    Cabral, Celso R. B.
    Lachos, V. H.
    [J]. STATISTICS AND ITS INTERFACE, 2017, 10 (03) : 425 - 439
  • [8] Estimation and Influence Diagnostics for the Multivariate Linear Regression Models with Skew Scale Mixtures of Normal Distributions
    Graciliano M. S. Louredo
    Camila B. Zeller
    Clécio S. Ferreira
    [J]. Sankhya B, 2022, 84 : 204 - 242
  • [9] Estimation and Influence Diagnostics for the Multivariate Linear Regression Models with Skew Scale Mixtures of Normal Distributions
    Louredo, Graciliano M. S.
    Zeller, Camila B.
    Ferreira, Clecio S.
    [J]. SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2022, 84 (01): : 204 - 242
  • [10] Heteroscedastic nonlinear regression models based on scale mixtures of skew-normal distributions
    Lachos, Victor H.
    Bandyopadhyay, Dipankar
    Garay, Aldo M.
    [J]. STATISTICS & PROBABILITY LETTERS, 2011, 81 (08) : 1208 - 1217