A numerical model of viscoelastic flow in microchannels

被引:0
|
作者
Trebotich, D [1 ]
Colella, P [1 ]
Miller, G [1 ]
Liepmann, D [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA USA
来源
关键词
non-Newtonian; viscoelasticity; Oldroyd-B; microfluidics; projection methods;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a numerical method to model nonNewtonian, viscoelastic flow at the microscale. The equations of motion are the incompressible Navier-Stokes equations coupled with the Oldroyd-B constitutive equation. This constitutive equation is chosen to model a Boger fluid which is representative of complex biological solutions exhibiting elastic behavior due to macromolecules in the solution (e.g., DNA solution). Our numerical approach is a projection method to impose the incompressibility constraint and a Lax-Wendroff method to predict velocities and stresses while recovering both viscous and elastic limits. The method is second-order accurate in space and time, free-stream preserving, has a time step constraint determined by the advective CFL condition, and requires the solution of only well-behaved linear systems amenable to the use of fast iterative methods. We demonstrate the method for viscoelastic incompressible flow in simple microchannels (2D) and microducts (0).(1)
引用
收藏
页码:520 / 523
页数:4
相关论文
共 50 条
  • [1] Numerical Simulations of Viscoelastic Flow over a Confined Cylinder in Microchannels
    Lei, S.
    Nolan, K.
    [J]. 2014 IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM), 2014, : 369 - 373
  • [2] Viscoelastic flow development in planar microchannels
    Li, Zhuo
    Haward, Simon J.
    [J]. MICROFLUIDICS AND NANOFLUIDICS, 2015, 19 (05) : 1123 - 1137
  • [3] Viscoelastic flow development in planar microchannels
    Zhuo Li
    Simon J. Haward
    [J]. Microfluidics and Nanofluidics, 2015, 19 : 1123 - 1137
  • [4] Controlling Viscoelastic Flow in Microchannels with Slip
    Bravo-Gutierrez, M. E.
    Castro, M.
    Hernandez-Machado, A.
    Corvera Poire, E.
    [J]. LANGMUIR, 2011, 27 (06) : 2075 - 2079
  • [5] VISUALIZATIONS OF VISCOELASTIC FLUID FLOW IN MICROCHANNELS
    Li, F. -C.
    Kinoshita, H.
    Oishi, M.
    Fujii, T.
    Oshima, M.
    [J]. PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS, AND MINICHANNELS, PTS A AND B, 2008, : 221 - 225
  • [6] A numerical model for phase-change suspension flow in microchannels
    Hao, YL
    Tao, YX
    [J]. NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2004, 46 (01) : 55 - 77
  • [7] A complete numerical model for electrokinetic flow and species transport in microchannels
    Z. Shao
    C. L. Ren
    G. E. Schneider
    [J]. The European Physical Journal Special Topics, 2009, 171 : 189 - 194
  • [8] A complete numerical model for electrokinetic flow and species transport in microchannels
    Shao, Z.
    Ren, C. L.
    Schneider, G. E.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 171 : 189 - 194
  • [9] Evolution of focused streams for viscoelastic flow in spiral microchannels
    Hua Gao
    Jian Zhou
    Mohammad Moein Naderi
    Zhangli Peng
    Ian Papautsky
    [J]. Microsystems & Nanoengineering, 9
  • [10] Dean flow velocity of viscoelastic fluids in curved microchannels
    Nikdoost, Arsalan
    Rezai, Pouya
    [J]. AIP ADVANCES, 2020, 10 (08)