Topological Growing of Laughlin States in Synthetic Gauge Fields

被引:35
|
作者
Grusdt, Fabian [1 ,2 ,3 ]
Letscher, Fabian [1 ,2 ]
Hafezi, Mohammad [4 ,5 ,6 ]
Fleischhauer, Michael [1 ,2 ]
机构
[1] Univ Kaiserslautern, Dept Phys, D-67663 Kaiserslautern, Germany
[2] Univ Kaiserslautern, Res Ctr OPTIMAS, D-67663 Kaiserslautern, Germany
[3] Grad Sch Mat Sci Mainz, D-67663 Kaiserslautern, Germany
[4] Univ Maryland, NIST, Joint Quantum Inst, College Pk, MD 20742 USA
[5] Univ Maryland, ECE Dept, College Pk, MD 20742 USA
[6] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
关键词
INCOMPRESSIBLE QUANTUM FLUID; MAGNETIC-FIELDS; HALL; QUANTIZATION; STATISTICS; HIERARCHY; ANYONS;
D O I
10.1103/PhysRevLett.113.155301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We suggest a scheme for the preparation of highly correlated Laughlin states in the presence of synthetic gauge fields, realizing an analogue of the fractional quantum Hall effect in photonic or atomic systems of interacting bosons. It is based on the idea of growing such states by adding weakly interacting composite fermions along with magnetic flux quanta one by one. The topologically protected Thouless pump ("Laughlin's argument") is used to create two localized flux quanta and the resulting hole excitation is subsequently filled by a single boson, which, together with one of the flux quanta, forms a composite fermion. Using our protocol, filling 1/2 Laughlin states can be grown with particle number N increasing linearly in time and strongly suppressed number fluctuations. To demonstrate the feasibility of our scheme, we consider two-dimensional lattices subject to effective magnetic fields and strong on-site interactions. We present numerical simulations of small lattice systems and also discuss the influence of losses.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Laughlin states and gauge theory
    Nekrasov N.
    [J]. Arnold Mathematical Journal, 2019, 5 (1) : 123 - 138
  • [2] Pattern-tunable synthetic gauge fields in topological photonic graphene
    Huang, Zhen-Ting
    Hong, Kuo-Bin
    Lee, Ray-Kuang
    Pilozzi, Laura
    Conti, Claudio
    Wu, Jhih-Sheng
    Lu, Tien-Chang
    [J]. NANOPHOTONICS, 2022, 11 (07) : 1297 - 1308
  • [3] Synthetic Gauge Fields in Synthetic Dimensions
    Celi, A.
    Massignan, P.
    Ruseckas, J.
    Goldman, N.
    Spielman, I. B.
    Juzeliunas, G.
    Lewenstein, M.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (04)
  • [4] SYNTHETIC GAUGE FIELDS WITH PHOTONS
    Hafezi, M.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2014, 28 (02):
  • [5] Interferometry with synthetic gauge fields
    Anderson, Brandon M.
    Taylor, Jacob M.
    Galitski, Victor M.
    [J]. PHYSICAL REVIEW A, 2011, 83 (03):
  • [6] Synthetic gauge fields for ultracold atoms
    Ana Maria Rey
    [J]. National Science Review, 2016, 3 (02) : 166 - 167
  • [7] Synthetic gauge fields for ultracold atoms
    Rey, Ana Maria
    [J]. NATIONAL SCIENCE REVIEW, 2016, 3 (02) : 166 - 167
  • [8] Growing extended Laughlin states in a quantum gas microscope: A patchwork construction
    Palm, F. A.
    Kwan, J.
    Bakkali-Hassani, B.
    Greiner, M.
    Schollwoeck, U.
    Goldman, N.
    Grusdt, F.
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [9] Adiabatic flux insertion and growing of Laughlin states of cavity Rydberg polaritons
    Ivanov, Peter A.
    Letscher, Fabian
    Simon, Jonathan
    Fleischhauer, Michael
    [J]. PHYSICAL REVIEW A, 2018, 98 (01)
  • [10] Topological gauge fields and the composite particle duality
    Valenti-Rojas, Gerard
    Baker, Aneirin J.
    Celi, Alessio
    Ohberg, Patrik
    [J]. PHYSICAL REVIEW RESEARCH, 2023, 5 (02):