Functionally Graded Scaffolds with Programmable Pore Size Distribution Based on Triply Periodic Minimal Surface Fabricated by Selective Laser Melting

被引:41
|
作者
Zhou, Xueyong [1 ]
Jin, Yuan [1 ,2 ]
Du, Jianke [1 ]
机构
[1] Ningbo Univ, Sch Mech Engn & Mech, Ningbo 315211, Peoples R China
[2] Zhejiang Univ, Sch Mech Engn, State Key Lab Fluid Power & Mechatron Syst, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
functionally graded scaffold; triply periodic minimal surfaces; programmable pore size distribution; mechanical property; selective laser melting; POROUS SCAFFOLDS; CERAMIC SCAFFOLDS; OPTIMAL-DESIGN; SIMULATION; BEHAVIOR; FOAMS; AREA;
D O I
10.3390/ma13215046
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Functional graded materials are gaining increasing attention in tissue engineering (TE) due to their superior mechanical properties and high biocompatibility. Triply periodic minimal surface (TPMS) has the capability to produce smooth surfaces and interconnectivity, which are very essential for bone scaffolds. To further enhance the versatility of TPMS, a parametric design method for functionally graded scaffold (FGS) with programmable pore size distribution is proposed in this study. Combining the relative density and unit cell size, the effect of design parameters on the pore size was also considered to effectively govern the distribution of pores in generating FGS. We made use of Gyroid to generate different types of FGS, which were then fabricated using selective laser melting (SLM), followed by investigation and comparison of their structural characteristics and mechanical properties. Their morphological features could be effectively controlled, indicating that TPMS was an effective way to achieve functional gradients which had bone-mimicking architectures. In terms of mechanical performance, the proposed FGS could achieve similar mechanical response under compression tests compared to the reference FGS with the same range of density gradient. The proposed method with control over pore size allows for effectively generating porous scaffolds with tailored properties which are potentially adopted in various fields.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [1] Mechanical Properties Directionality and Permeability of Fused Triply Periodic Minimal Surface Porous Scaffolds Fabricated by Selective Laser Melting
    Ye, Jianhua
    He, Weihui
    Wei, Tieping
    Sun, Changning
    Zeng, Shoujin
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2023, 9 (08) : 5084 - 5096
  • [2] An investigation into the effect of gradients on the manufacturing fidelity of triply periodic minimal surface structures with graded density fabricated by selective laser melting
    Yang, Lei
    Ferrucci, Massimiliano
    Mertens, Raya
    Dewulf, Wim
    Yan, Chunze
    Shi, Yusheng
    Yang, Shoufeng
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2020, 275
  • [3] Design, mechanical properties and energy absorption capability of graded-thickness triply periodic minimal surface structures fabricated by selective laser melting
    Fan, Xiaojie
    Tang, Qian
    Feng, Qixiang
    Ma, Shuai
    Song, Jun
    Jin, Mengxia
    Guo, Fuyu
    Jin, Peng
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2021, 204
  • [4] Mechanical performance of triply periodic minimal surface structures with a novel hybrid gradient fabricated by selective laser melting
    Qiu, Na
    Zhang, Jiazhong
    Yuan, Feiquan
    Jin, Zhiyang
    Zhang, Yiming
    Fang, Jianguang
    ENGINEERING STRUCTURES, 2022, 263
  • [5] Biomechanical influence of structural variation strategies on functionally graded scaffolds constructed with triply periodic minimal surface
    Zhang, Xiang-Yu
    Yan, Xing-Chen
    Fang, Gang
    Liu, Min
    ADDITIVE MANUFACTURING, 2020, 32
  • [6] Manufacturability, Mechanical Properties, Mass-Transport Properties and Biocompatibility of Triply Periodic Minimal Surface (TPMS) Porous Scaffolds Fabricated by Selective Laser Melting
    Ma, Shuai
    Tang, Qian
    Han, Xiaoxiao
    Feng, Qixiang
    Song, Jun
    Setchi, Rossitza
    Liu, Ying
    Liu, Yang
    Goulas, Athanasios
    Engstrom, Daniel S.
    Tse, Yau Yau
    Zhen, Ni
    MATERIALS & DESIGN, 2020, 195 (195)
  • [7] An isogeometric analysis of functionally graded triply periodic minimal surface microplates
    Nguyen, Nam V.
    Tran, Kim Q.
    Phung-Van, P.
    Lee, Jaehong
    Nguyen-Xuan, H.
    AEROSPACE SCIENCE AND TECHNOLOGY, 2023, 137
  • [8] Isogeometric analysis of functionally graded triply periodic minimal surface shells
    Nguyen, Tan N.
    Wattanasakulpong, Nuttawit
    Nguyen, Ngoc Phi
    Fakharian, Pouyan
    Eiadtrong, Suppakit
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024,
  • [9] A meshfree method for functionally graded triply periodic minimal surface plates
    Thai, Chien H.
    Hung, P. T.
    Nguyen-Xuan, H.
    Phung-Van, P.
    COMPOSITE STRUCTURES, 2024, 332
  • [10] Effect of heat treatment on mechanical properties of CuCrZr triply periodic minimal surface structures fabricated by selective laser melting
    Zhang, Qifei
    Tang, Xiu
    Liu, Bin
    Li, Zhonghua
    Bi, Jiawei
    Li, Yadong
    Huo, Wenjuan
    Wei, Min
    Yang, Huirong
    Bai, Peikang
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 27 : 7839 - 7851