AN ANALOGUE OF THE ALEKSANDROV PROJECTION THEOREM FOR CONVEX LATTICE POLYGONS

被引:2
|
作者
Zhang, Ning [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1090/proc/13375
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K and L be origin-symmetric convex lattice polytopes in R-n. We study a discrete analogue of the Aleksandrov projection theorem. If for every u is an element of Z(n), the sets (K boolean AND Z(n))| u(perpendicular to) and (L boolean AND Z(n))|u(perpendicular to) have the same number of points, is K = L? We give a positive answer to this problem in Z(2) under the additional hypothesis that (2K boolean AND Z(2))| u(perpendicular to) and (2L boolean AND Z(2))| u(perpendicular to) have the same number of points for every u is an element of Z(n).
引用
收藏
页码:2305 / 2310
页数:6
相关论文
共 50 条