Simulation of Resonant Cavity-Coupled Colloidal Quantum-Dot Detectors with Polarization Sensitivity

被引:5
|
作者
Zhao, Pengfei [1 ]
Mu, Ge [1 ]
Chen, Menglu [1 ,2 ,3 ]
Tang, Xin [1 ,2 ,3 ]
机构
[1] Beijing Inst Technol, Sch Opt & Photon, Beijing 100081, Peoples R China
[2] Beijing Key Lab Precis Optoelect Measurement Inst, Beijing 100081, Peoples R China
[3] Yangtze Delta Reg Acad, Beijing Inst Technol, Jiaxing 314000, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
polarization; colloidal quantum dots; detectivity; optical cavity; BROAD-BAND; PERFORMANCE;
D O I
10.3390/coatings12040499
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Infrared detectors with polarization sensitivity could extend the information dimension of the detected signals and improve target recognition ability. However, traditional infrared polarization detectors with epitaxial semiconductors usually suffer from low extinction ratio, complexity in structure and high cost. Here, we report a simulation study of colloidal quantum dot (CQD) infrared detectors with monolithically integrated metal wire-grid polarizer and optical cavity. The solution processibility of CQDs enables the direct integration of metallic wire-grid polarizers with CQD films. The polarization selectivity of HgTe CQDs with resonant cavity-enhanced wire-grid polarizers are studied in both short-wave and mid-wave infrared region. The extinction ratio in short-wave and mid-wave region can reach up to 40 and 60 dB, respectively. Besides high extinction ratio, the optical cavity enhanced wire-grid polarizer could also significantly improve light absorption at resonant wavelength by a factor of 1.5, which leads to higher quantum efficiency and better spectral selectivity. We believe that coupling CQD infrared detector with wire-grid polarizer and optical cavity can become a promising way to realize high-performance infrared optoelectronic devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A review of external cavity-coupled quantum dot lasers
    Li, S. G.
    Gong, Q.
    Cao, C. F.
    Wang, X. Z.
    Yan, J. Y.
    Wang, Y.
    Wang, H. L.
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2014, 46 (05) : 623 - 640
  • [2] A review of external cavity-coupled quantum dot lasers
    S. G. Li
    Q. Gong
    C. F. Cao
    X. Z. Wang
    J. Y. Yan
    Y. Wang
    H. L. Wang
    [J]. Optical and Quantum Electronics, 2014, 46 : 623 - 640
  • [3] Resonant Cavity Colloidal Quantum Dot LEDs
    Shirasaki, Yasuhiro
    Wood, Vanessa
    Tischler, Yaakov R.
    Supran, Geoffrey J.
    Bulovic, Vladimir
    [J]. 2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [4] Sisyphus Thermalization of Photons in a Cavity-Coupled Double Quantum Dot
    Gullans, M. J.
    Stehlik, J.
    Liu, Y. -Y.
    Eichler, C.
    Petta, J. R.
    Taylor, J. M.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (05)
  • [5] Photon Emission from a Cavity-Coupled Double Quantum Dot
    Liu, Y. -Y.
    Petersson, K. D.
    Stehlik, J.
    Taylor, J. M.
    Petta, J. R.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (03)
  • [6] Resonant cavity-enhanced colloidal quantum-dot dual-band infrared photodetectors
    Luo, Yuning
    Zhang, Shuo
    Tang, Xin
    Chen, Menglu
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (21) : 8218 - 8225
  • [7] Simulation and Design of HgSe Colloidal Quantum-Dot Microspectrometers
    Wen, Chong
    Zhao, Xue
    Mu, Ge
    Chen, Menglu
    Tang, Xin
    [J]. COATINGS, 2022, 12 (07)
  • [8] Towards Infrared Electronic Eyes: Flexible Colloidal Quantum Dot Photovoltaic Detectors Enhanced by Resonant Cavity
    Tang, Xin
    Ackerman, Matthew M.
    Shen, Guohua
    Guyot-Sionnest, Philippe
    [J]. SMALL, 2019, 15 (12)
  • [9] Quantum-dot detectors - Quantum-dot IR photodetectors get 'hotter'
    Razeghi, Manijeh
    [J]. LASER FOCUS WORLD, 2007, 43 (12): : 75 - 76
  • [10] Megapixel large-format colloidal quantum-dot infrared imagers with resonant-cavity enhanced photoresponse
    Luo, Yuning
    Tan, Yimei
    Bi, Cheng
    Zhang, Shuo
    Xue, Xiaomeng
    Chen, Menglu
    Hao, Qun
    Liu, Yanfei
    Tang, Xin
    [J]. APL PHOTONICS, 2023, 8 (05)