An interactive surrogate-based method for computationally expensive multiobjective optimisation

被引:8
|
作者
Tabatabaei, Mohammad [1 ]
Hartikainen, Markus [1 ]
Sindhya, Karthik [1 ]
Hakanen, Jussi [1 ]
Miettinen, Kaisa [1 ]
机构
[1] Univ Jyvaskyla, Fac Informat Technol, Jyvaskyla, Finland
基金
芬兰科学院;
关键词
Multiple criteria decision-making (MCDM); interactive methods; computational cost; black-box functions; metamodeling techniques; achievement scalarising function; INTERPOLATION; ALGORITHMS; METAMODEL; SURFACE; MODELS;
D O I
10.1080/01605682.2018.1468860
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Many disciplines involve computationally expensive multiobjective optimisation problems. Surrogate-based methods are commonly used in the literature to alleviate the computational cost. In this paper, we develop an interactive surrogate-based method called SURROGATE-ASF to solve computationally expensive multiobjective optimisation problems. This method employs preference information of a decision-maker. Numerical results demonstrate that SURROGATE-ASF efficiently provides preferred solutions for a decision-maker. It can handle different types of problems involving for example multimodal objective functions and nonconvex and/or disconnected Pareto frontiers.
引用
收藏
页码:898 / 914
页数:17
相关论文
共 50 条
  • [1] An Ensemble Surrogate-Based Framework for Expensive Multiobjective Evolutionary Optimization
    Lin, Qiuzhen
    Wu, Xunfeng
    Ma, Lijia
    Li, Jianqiang
    Gong, Maoguo
    Coello, Carlos A. Coello
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (04) : 631 - 645
  • [2] Comparison of Surrogate-Based Uncertainty Quantification Methods for Computationally Expensive Simulators
    Owen, N. E.
    Challenor, P.
    Menon, P. P.
    Bennani, S.
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 403 - 435
  • [3] SOCEMO: Surrogate Optimization of Computationally Expensive Multiobjective Problems
    Muller, Juliane
    [J]. INFORMS JOURNAL ON COMPUTING, 2017, 29 (04) : 581 - 596
  • [4] Surrogate-based distributed optimisation for expensive black-box functions
    Li, Zhongguo
    Dong, Zhen
    Liang, Zhongchao
    Ding, Zhengtao
    [J]. AUTOMATICA, 2021, 125
  • [5] A surrogate-based cooperative optimization framework for computationally expensive black-box problems
    Garcia-Garcia, Jose Carlos
    Garcia-Rodenas, Ricardo
    Codina, Esteve
    [J]. OPTIMIZATION AND ENGINEERING, 2020, 21 (03) : 1053 - 1093
  • [6] A surrogate-based cooperative optimization framework for computationally expensive black-box problems
    José Carlos García-García
    Ricardo García-Ródenas
    Esteve Codina
    [J]. Optimization and Engineering, 2020, 21 : 1053 - 1093
  • [7] Benchmarking surrogate-based optimisation algorithms on expensive black-box functions
    Bliek, Laurens
    Guijt, Arthur
    Karlsson, Rickard
    Verwer, Sicco
    de Weerdt, Mathijs
    [J]. APPLIED SOFT COMPUTING, 2023, 147
  • [8] Surrogate-based Bayesian comparison of computationally expensive models: application to microbially induced calcite precipitation
    Scheurer, Stefania
    Schaefer Rodrigues Silva, Aline
    Mohammadi, Farid
    Hommel, Johannes
    Oladyshkin, Sergey
    Flemisch, Bernd
    Nowak, Wolfgang
    [J]. COMPUTATIONAL GEOSCIENCES, 2021, 25 (06) : 1899 - 1917
  • [9] Surrogate-based Bayesian comparison of computationally expensive models: application to microbially induced calcite precipitation
    Stefania Scheurer
    Aline Schäfer Rodrigues Silva
    Farid Mohammadi
    Johannes Hommel
    Sergey Oladyshkin
    Bernd Flemisch
    Wolfgang Nowak
    [J]. Computational Geosciences, 2021, 25 : 1899 - 1917
  • [10] A Survey on Sustainable Surrogate-Based Optimisation
    Bliek, Laurens
    [J]. SUSTAINABILITY, 2022, 14 (07)