The radio to TeV orbital variability of the microquasar LS I+61 303

被引:52
|
作者
Bosch-Ramon, V.
Paredes, J. M.
Romero, G. E.
Ribo, M.
机构
[1] Univ Barcelona, Dept Astron & Meteorol, E-08028 Barcelona, Catalonia, Spain
[2] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany
[3] Inst Argentino Radioastron, RA-1894 Buenos Aires, DF, Argentina
[4] Natl Univ La Plata, Fac Ciencias Astron & Geofis, RA-1900 La Plata, Argentina
来源
ASTRONOMY & ASTROPHYSICS | 2006年 / 459卷 / 02期
关键词
X-rays : binaries -; stars; winds; outflows; stars : individual : LS I+61 303; radiation mechanisms : non thermal;
D O I
10.1051/0004-6361:20065830
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The microquasar LS I + 61 303 has recently been detected at TeV energies by the Cherenkov telescope MAGIC, presenting variability on timescales similar to its orbital period. This system has been intensively observed at different wavelengths during the last three decades, showing a very complex behavior along the orbit. Aims. We aim to explain, using a leptonic model in the accretion scenario, the observed orbital variability and spectrum from radio to TeV energies of LS I + 61 303. Methods. We apply a leptonic model based on accretion of matter from the slow inhomogeneous equatorial wind of the primary star, assuming particle injection proportional to the accretion rate. The relativistic electron energy distribution within the binary system is computed taking into account convective/adiabatic and radiative losses. The spectral energy distribution ( SED) has been calculated accounting for synchrotron and ( Thomson/Klein Nishina - KN-) inverse Compton ( IC) processes and the photon-photon absorption in the ambient photon fields. The angle dependence of the photon- photon and IC cross sections has been considered in the calculations. Results. We reproduce the main features of the observed light curves from LS I + 61 303 at radio, X-rays, high-energy ( HE), and very high-energy ( VHE) gamma-rays, and the whole spectral energy distribution. Conclusions. Our model is able to explain the radio to TeV orbital variability taking into account that radiation along the orbit is strongly affected by the variable accretion rate, the magnetic field strength, and by the ambient photon field via dominant IC losses and photon- photon absorption at periastron.
引用
收藏
页码:L25 / L28
页数:4
相关论文
共 50 条
  • [1] The radio to TeV orbital variability of the microquasar LS i +61 303
    Bosch-Ramon, V.
    Paredes, J.M.
    Romero, G.E.
    Ribó, M.
    Astronomy and Astrophysics, 1600, 459 (02):
  • [2] Orbital parameters of the microquasar LS I+61 303
    Casares, J
    Ribas, I
    Paredes, JM
    Martí, J
    Allende Prieto, C
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 360 (03) : 1105 - 1109
  • [3] LS I+61 303: MICROQUASAR OR NOT MICROQUASAR?
    Romero, G. E.
    Orellana, M.
    Okazaki, A. T.
    Owocki, S. P.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2008, 17 (10): : 1875 - 1881
  • [4] Super-orbital variability of LS I+61°303 at TeV energies
    Ahnen, M. L.
    Ansoldi, S.
    Antonelli, L. A.
    Antoranz, P.
    Babic, A.
    Banerjee, B.
    Bangale, P.
    Barres de Almeida, U.
    Barrio, J. A.
    Becerra Gonzalez, J.
    Bednarek, W.
    Bernardini, E.
    Biasuzzi, B.
    Biland, A.
    Blanch, O.
    Bonnefoy, S.
    Bonnoli, G.
    Borracci, F.
    Bretz, T.
    Buson, S.
    Carosi, A.
    Chatterjee, A.
    Clavero, R.
    Colin, P.
    Colombo, E.
    Contreras, J. L.
    Cortina, J.
    Covino, S.
    Da Vela, P.
    Dazzi, F.
    De Angelis, A.
    De Lotto, B.
    de Ona Wilhelmi, E.
    Delgado Mendez, C.
    Di Pierro, F.
    Dominguez, A.
    Dominis Prester, D.
    Dorner, D.
    Doro, M.
    Einecke, S.
    Glawion, D. Eisenacher
    Elsaesser, D.
    Fernandez-Barral, A.
    Fidalgo, D.
    Fonseca, M. V.
    Font, L.
    Frantzen, K.
    Fruck, C.
    Galindo, D.
    Garcia Lopez, R. J.
    ASTRONOMY & ASTROPHYSICS, 2016, 591
  • [5] Orbital and superorbital variability of LS I+61 303 at low radio frequencies with GMRT and LOFAR
    Marcote, B.
    Ribo, M.
    Paredes, J. M.
    Ishwara-Chandra, C. H.
    Swinbank, J. D.
    Broderick, J. W.
    Markoff, S.
    Fender, R.
    Wijers, R. A. M. J.
    Pooley, G. G.
    Stewart, A. J.
    Bell, M. E.
    Breton, R. P.
    Carbone, D.
    Corbel, S.
    Eisloeffel, J.
    Falcke, H.
    Griessmeier, J. -M.
    Kuniyoshi, M.
    Pietka, M.
    Rowlinson, A.
    Serylak, M.
    van der Horst, A. J.
    van Leeuwen, J.
    Wise, M. W.
    Zarka, P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 456 (02) : 1791 - 1802
  • [6] Spectropolarimetric study on circumstellar structure of microquasar LS I+61○ 303
    Nagae, Osamu
    Kawabata, Koji S.
    Fukazawa, Yasushi
    Yamashita, Takuya
    Ohsugi, Takashi
    Uemura, Makoto
    Chiyonobu, Shingo
    Isogai, Mizuki
    Cho, Toshinari
    Suzuki, Masaaki
    Okazaki, Akira
    Okita, Kiichi
    Yanagisawa, Kenshi
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2006, 58 (06) : 1015 - 1022
  • [7] Search for radio pulsations in LS I+61 303
    Canellas, A.
    Joshi, B. C.
    Paredes, J. M.
    Ishwara-Chandra, C. H.
    Moldon, J.
    Zabalza, V.
    Marti, J.
    Ribo, M.
    ASTRONOMY & ASTROPHYSICS, 2012, 543
  • [8] Prediction of the radio outbursts of LS I+61°303
    Jaron, F.
    Massi, M.
    ASTRONOMY & ASTROPHYSICS, 2013, 559
  • [9] Neutrino signals from a galactic source: the microquasar LS I+61 303
    Christiansen, H. R.
    PHYSICA SCRIPTA, 2006, T127 (82-84) : 82 - 84
  • [10] A Bayesian analysis of the radio binary LS I+61°303
    Gregory, PC
    STATISTICAL CHALLENGES IN ASTRONOMY, 2003, : 425 - 428