Boundary Integral Solution of the Time-Fractional Diffusion Equation

被引:20
|
作者
Kemppainen, J. [1 ]
Ruotsalainen, K. [1 ]
机构
[1] Univ Oulu, Div Math, FI-90014 Oulu, Finland
关键词
Boundary integral equation; time-fractional diffusion; fundamental solution; single layer operator; HEAT-EQUATION; OPERATORS;
D O I
10.1007/s00020-009-1687-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here we consider initial boundary value problem for the time fractional diffusion equation by using the single layer potential representation for the solution. We derive the equivalent boundary integral equation. We will show that the single layer potential admits the usual jump relations and discuss the mapping properties of the single layer operator in the anisotropic Sobolev spaces. Our main theorem is that the single layer operator is coercive in an anisotropic Sobolev space. Based on the coercivity and continuity of the single layer operator we finally show the bijectivity of the operator in a certain range of anisotropic Sobolev spaces.
引用
收藏
页码:239 / 249
页数:11
相关论文
共 50 条