Modeling Multicountry Longevity Risk With Mortality Dependence: A Levy Subordinated Hierarchical Archimedean Copulas Approach

被引:23
|
作者
Zhu, Wenjun [1 ]
Tan, Ken Seng [2 ]
Wang, Chou-Wen [3 ,4 ]
机构
[1] Nankai Univ, Sch Finance, Tianjin, Peoples R China
[2] Univ Waterloo, Dept Stat & Actuarial Sci, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[3] Natl Sun Yat Sen Univ, Dept Finance, Kaohsiung, Taiwan
[4] Natl Chengchi Univ, Coll Commerce, Risk & Insurance Res Ctr, Taipei, Taiwan
基金
加拿大自然科学与工程研究理事会;
关键词
STOCHASTIC MORTALITY; POPULATIONS; SWAPS;
D O I
10.1111/jori.12198
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This article proposes a new copula model known as the Levy subordinated hierarchical Archimedean copulas (LSHAC) for multicountry mortality dependence modeling. To the best of our knowledge, this is the first article to apply the LSHAC model to mortality studies. Through an extensive empirical analysis on modeling mortality experiences of 13 countries, we demonstrate that the LSHAC model, which has the advantage of capturing the geographical structure of mortality data, yields better fit, compared to the elliptical copulas. In addition, the proposed LSHAC model generates out-of-sample forecasts with smaller standard deviations, when compared to other benchmark copula models. The LSHAC model also confirms that there is an association between geographical locations and dependence of the overall mortality improvement. These results yield new insights into future longevity risk management. Finally, the model is used to price a hypothetical survival index swap written on a weighted mortality index. The results highlight the importance of dependence modeling in managing longevity risk and reducing population basis risk.
引用
收藏
页码:477 / 493
页数:17
相关论文
共 50 条
  • [1] SPATIAL DEPENDENCE AND AGGREGATION IN WEATHER RISK HEDGING: A LEVY SUBORDINATED HIERARCHICAL ARCHIMEDEAN COPULAS (LSHAC) APPROACH
    Zhu, Wenjun
    Tan, Ken Seng
    Porth, Lysa
    Wang, Chou-Wen
    [J]. ASTIN BULLETIN, 2018, 48 (02): : 779 - 815
  • [2] Structure and estimation of Levy subordinated hierarchical Archimedean copulas (LSHAC): Theory and empirical tests
    Zhu, Wenjun
    Wang, Chou-Wen
    Tan, Ken Seng
    [J]. JOURNAL OF BANKING & FINANCE, 2016, 69 : 20 - 36
  • [3] Constructing hierarchical Archimedean copulas with Levy subordinators
    Hering, Christian
    Hofert, Marius
    Mai, Jan-Frederik
    Scherer, Matthias
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (06) : 1428 - 1433
  • [4] MODELING DEPENDENCE BETWEEN LOSS TRIANGLES WITH HIERARCHICAL ARCHIMEDEAN COPULAS
    Abdallah, Anas
    Boucher, Jean-Philippe
    Cossette, Helene
    [J]. ASTIN BULLETIN, 2015, 45 (03): : 577 - 599
  • [5] Using hierarchical Archimedean copulas for modelling mortality dependence and pricing mortality-linked securities
    Li, Jackie
    Balasooriya, Uditha
    Liu, Jia
    [J]. ANNALS OF ACTUARIAL SCIENCE, 2021, 15 (03) : 505 - 518
  • [6] Systemic Risk Modeling with Levy Copulas
    Liu, Yuhao
    Djuric, Petar M.
    Kim, Young Shin
    Rachev, Svetlozar T.
    Glimm, James
    [J]. JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2021, 14 (06)
  • [7] An Alternative Approach to the Structure Determination of Hierarchical Archimedean Copulas
    Gorecki, Jan
    Holena, Martin
    [J]. MATHEMATICAL METHODS IN ECONOMICS 2013, PTS I AND II, 2013, : 201 - 206
  • [8] Modeling dependence structures among international stock markets: Evidence from hierarchical Archimedean copulas
    Yang, Lu
    Cai, Xiao Jing
    Li, Mengling
    Hamori, Shigeyuki
    [J]. ECONOMIC MODELLING, 2015, 51 : 308 - 314
  • [9] Capturing non-exchangeable dependence in multivariate loss processes with nested Archimedean Levy copulas
    Avanzi, Benjamin
    Tao, Jamie
    Wong, Bernard
    Yang, Xinda
    [J]. ANNALS OF ACTUARIAL SCIENCE, 2016, 10 (01) : 87 - 117
  • [10] Modeling and measuring multivariate operational risk with Levy copulas
    Boecker, Klaus
    Klueppelberg, Claudia
    [J]. JOURNAL OF OPERATIONAL RISK, 2008, 3 (02): : 3 - 27