Quasi-exact solvability of Dirac equation with Lorentz scalar potential

被引:27
|
作者
Ho, Choon-Lin [1 ]
机构
[1] Tamkang Univ, Dept Phys, Tamsui 25137, Taiwan
关键词
D O I
10.1016/j.aop.2005.12.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider exact/quasi-exact solvability of Dirac equation with a Lorentz scalar potential based on factorizability of the equation. Exactly solvable and sl(2)-based quasi-exactly solvable potentials are discussed separately in Cartesian coordinates for a pure Lorentz potential depending only on one spatial dimension, and in spherical coordinates in the presence of a Dirac monopole. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:2170 / 2182
页数:13
相关论文
共 50 条
  • [1] Quasi-exact solvability of Dirac equations
    He, Choon-Lin
    [J]. Differential Geometry and Physics, 2006, 10 : 232 - 240
  • [2] Quasi-exact solvability of Dirac-Pauli equation and generalized Dirac oscillators
    Ho, CL
    Roy, P
    [J]. ANNALS OF PHYSICS, 2004, 312 (01) : 161 - 176
  • [3] Quasi-exact solvability of the Pauli equation
    Ho, CL
    Roy, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (16): : 4617 - 4628
  • [4] Quasi-exact solution to the Dirac equation for the hyperbolic-secant potential
    Hartmann, R. R.
    Portnoi, M. E.
    [J]. PHYSICAL REVIEW A, 2014, 89 (01):
  • [5] GELFAND-LEVITAN EQUATION AND QUASI-EXACT SOLVABILITY
    USHVERIDZE, AG
    [J]. MODERN PHYSICS LETTERS A, 1991, 6 (08) : 739 - 742
  • [6] Quasi-exact and asymptotic iterative solutions of Dirac equation in the presence of some scalar potentials
    A Chenaghlou
    S Aghaei
    R Mokhtari
    [J]. Pramana, 2020, 94
  • [7] Quasi-exact and asymptotic iterative solutions of Dirac equation in the presence of some scalar potentials
    Chenaghlou, A.
    Aghaei, S.
    Mokhtari, R.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [8] Quasi-exact solvability of planar Dirac electron in Coulomb and magnetic fields
    Chiang, CM
    Ho, CL
    [J]. MODERN PHYSICS LETTERS A, 2005, 20 (09) : 673 - 679
  • [9] Quasi-exact solvability of Inozemtsev models
    Takemura, K
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (41): : 8867 - 8881
  • [10] Quasi-exact solvability in local field theory
    Ushveridze, A
    [J]. GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 466 - 470