A Gibbs point field model for the spatial pattern of coronary capillaries

被引:7
|
作者
Karch, R.
Neumann, M.
Neumann, F.
Ullrich, R.
Neumueller, J.
Schreiner, W.
机构
[1] Med Univ Vienna, Dept Med Comp Sci, A-1090 Vienna, Austria
[2] Univ Vienna, Inst Expt Phys, A-1090 Vienna, Austria
[3] Med Univ Vienna, Dept Pathol, A-1090 Vienna, Austria
[4] Med Univ Vienna, Dept Cell Biol & Ultrastruct Res, A-1090 Vienna, Austria
关键词
capillaries; point field process; one-component plasma; computer simulation; cardiomyopathy;
D O I
10.1016/j.physa.2006.02.018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a Gibbs point field model for the pattern of coronary capillaries in transverse histologic sections from human hearts, based on the physiology of oxygen supply from capillaries to tissue. To specify the potential energy function of the Gibbs point field, we draw on an analogy between the equation of steady-state oxygen diffusion from an array of parallel capillaries to the surrounding tissue and Poisson's equation for the electrostatic potential of a two-dimensional distribution of identical point charges. The influence of factors other than diffusion is treated as a thermal disturbance. On this basis, we arrive at the well-known two-dimensional one-component plasma, a system of identical point charges exhibiting a weak (logarithmic) repulsive interaction that is completely characterized by a single dimensionless parameter. By variation of this parameter, the model is able to reproduce many characteristics of real capillary patterns. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:599 / 611
页数:13
相关论文
共 50 条
  • [1] The spatial pattern of coronary capillaries in patients with dilated, ischemic, or inflammatory cardiomyopathy
    Karch, R
    Neumann, F
    Ullrich, R
    Neumüller, J
    Podesser, BK
    Neumann, M
    Schreiner, W
    [J]. CARDIOVASCULAR PATHOLOGY, 2005, 14 (03) : 135 - 144
  • [2] Logistic regression for spatial Gibbs point processes
    Baddeley, Adrian
    Coeurjolly, Jean-Francois
    Rubak, Ege
    Waagepetersen, Rasmus
    [J]. BIOMETRIKA, 2014, 101 (02) : 377 - 392
  • [3] Gibbs Parameter Sampling Algorithm Based on Finite Mixture Model of Random Point Pattern
    Wang, Zhi
    Liu, Wei-feng
    Ding, Yu-xin
    Huang, Zi-long
    [J]. 2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 7613 - 7618
  • [4] A mixture spatial point pattern model for the quasar luminosity function
    Najafabadi, Amir T. Payandeh
    Baniasadi, Fatemeh
    [J]. NEW ASTRONOMY, 2011, 16 (06) : 386 - 390
  • [5] Leverage and influence diagnostics for Gibbs spatial point processes
    Baddeley, Adrian
    Rubak, Ege
    Turner, Rolf
    [J]. SPATIAL STATISTICS, 2019, 29 : 15 - 48
  • [6] Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range
    Rajala, T.
    Penttinen, A.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 530 - 541
  • [7] On the MLE for a spatial point pattern
    Montes, F
    Mateu, J
    [J]. ADVANCES IN APPLIED PROBABILITY, 1996, 28 (02) : 339 - 339
  • [8] Gibbs point field model quantifies disorder in microvasculature of U87-glioblastoma
    Hahn, Artur
    Bode, Julia
    Kruewel, Thomas
    Kampf, Thomas
    Buschle, Lukas R.
    Sturm, Volker J. F.
    Zhang, Ke
    Tews, Bjoern
    Schlemmer, Heinz-Peter
    Heiland, Sabine
    Bendszus, Martin
    Ziener, Christian H.
    Breckwoldt, Michael O.
    Kurz, Felix T.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2020, 494
  • [9] Analysis of a spatial point pattern in relation to a reference point
    Sadahiro, Yukio
    Matsumoto, Hidetaka
    [J]. JOURNAL OF GEOGRAPHICAL SYSTEMS, 2024, 26 (03) : 351 - 373
  • [10] Testing uniformity of a spatial point pattern
    Ho, Lai Ping
    Chiu, Sung Nok
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2007, 16 (02) : 378 - 398