Toward operational monitoring of forest cover change in California using multitemporal remote sensing data

被引:0
|
作者
Rogan, J [1 ]
Franklin, J [1 ]
Stow, D [1 ]
Levien, L [1 ]
Fischer, C [1 ]
机构
[1] San Diego State Univ, Dept Geog, San Diego, CA 92182 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents preliminary results of research to improve upon an existing operational forest change detection monitoring strategy in California. Comparisons were made between Landsat 5 TM and Landsat 7 ETM scene normalization techniques (absolute versus, relative). Prior to normalization, scenes containing wildfire smoke plumes were successfully corrected using a space-varying haze equalization algorithm. Simple dark object subtraction provided improved performance over relative (pseudo-invariant feature) approaches. A decision tree classifier produced high change map overall accuracy (86%) for five categories of forest cover change.
引用
收藏
页码:3090 / 3092
页数:3
相关论文
共 50 条
  • [1] Land Cover Change Detection Using Multispectral and Multitemporal Remote Sensing Data
    Hashim, Ummi Kalsom Mohd
    Ahmad, Asmala
    Abu Sari, Mohd Yazid
    Mohd, Othman
    Sakidin, Hamzah
    Rasib, Abd Wahid
    [J]. PROCEEDINGS OF INNOVATIVE RESEARCH AND INDUSTRIAL DIALOGUE 2018 (IRID'18), 2019, : 176 - 177
  • [2] Monitoring land cover in Acre State, western Brazilian Amazonia, using multitemporal remote sensing data
    Shimabukuro, Yosio Edemir
    Duarte, Valdete
    Arai, Egidio
    Freitas, Ramon M.
    Martini, Paulo Roberto
    Lima, Andre
    [J]. INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2010, 1 (04) : 325 - 335
  • [3] Mapping and monitoring land cover in Acre State, Brazilian Amazonia, using multitemporal remote sensing data
    Shimabukuro, Yosio E.
    Duarte, Valdete
    Arai, Egidio
    Freitas, Ramon M.
    Martini, Paulo R.
    Lima, Andre
    [J]. 2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2628 - 2631
  • [4] Prediction of Forest Aboveground Biomass Using Multitemporal Multispectral Remote Sensing Data
    Naik, Parth
    Dalponte, Michele
    Bruzzone, Lorenzo
    [J]. REMOTE SENSING, 2021, 13 (07)
  • [5] The analysis of land cover change in the Baiyang Lake region by multitemporal Landsat remote sensing data
    Hou, Meiting
    Mao, Renzhao
    Chen, Suying
    Li, Hongjun
    Wang, Bo
    [J]. REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY III, 2006, 6298
  • [6] Forest Change Detection Using Remote Sensing Data
    Denisova, Anna
    Egorova, Anna
    Sergeyev, Vladislav
    [J]. 2020 VI INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND NANOTECHNOLOGY (IEEE ITNT-2020), 2020,
  • [7] MONITORING GLOBAL CHANGE - COMPARISON OF FOREST COVER ESTIMATES USING REMOTE-SENSING AND INVENTORY APPROACHES
    TURNER, DP
    KOERPER, G
    GUCINSKI, H
    PETERSON, C
    DIXON, RK
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 1993, 26 (2-3) : 295 - 305
  • [8] Geostatistical estimation of forest cover areas using remote sensing data
    Barata, MT
    Nunes, MC
    Sousa, AJ
    Muge, FH
    Albuquerque, MT
    [J]. GEOSTATISTICS WOLLONGONG '96, VOLS 1 AND 2, 1997, 8 (1-2): : 1244 - 1257
  • [9] Continuous land cover change monitoring in the remote sensing big data era
    DONG JinWei
    KUANG WenHui
    LIU JiYuan
    [J]. Science China Earth Sciences, 2017, 60 (12) : 2223 - 2224
  • [10] Continuous land cover change monitoring in the remote sensing big data era
    JinWei Dong
    WenHui Kuang
    JiYuan Liu
    [J]. Science China Earth Sciences, 2017, 60 : 2223 - 2224