ASYMPTOTIC TORSION AND TOEPLITZ OPERATORS

被引:21
|
作者
Bismut, Jean-Michel [1 ]
Ma, Xiaonan [2 ]
Zhang, Weiping [3 ,4 ]
机构
[1] Univ Paris Sud, Dept Math, Batiment 425, F-91405 Orsay, France
[2] Univ Paris 07, UFR Math, Case 7012, F-75205 Paris 13, France
[3] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[4] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
欧洲研究理事会;
关键词
index theory and related fixed point theorems; determinants and determinant bundles; analytic torsion; SINGER ANALYTIC-TORSION; R-TORSION; KAHLER-MANIFOLDS; SYMPLECTIC FORM; DIRECT IMAGES; CO-HOMOLOGY; QUANTIZATION; EQUIVARIANT; FAMILIES; BUNDLES;
D O I
10.1017/S1474748015000171
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use Toeplitz operators to evaluate the leading term in the asymptotics of the analytic torsion forms associated with a family of flat vector bundles F-p. For p is an element of N, the flat vector bundle F-p is the direct image of L-p, where L is a holomorphic positive line bundle on the fibres of a flat fibration by compact Kahler manifolds. The leading term of the analytic torsion forms is the integral along the fibre of a locally defined differential form.
引用
收藏
页码:223 / 349
页数:127
相关论文
共 50 条
  • [1] Toeplitz operators and asymptotic analytic torsion
    Bismut, Jean-Michel
    Ma, Xiaonan
    Zhang, Weiping
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (17-18) : 977 - 981
  • [3] Asymptotic invertibility of Toeplitz operators
    Silbermann, B
    SINGULAR INTEGRAL OPERATORS AND RELATED TOPICS, 1996, 90 : 295 - 303
  • [4] ASYMPTOTIC TOEPLITZ-OPERATORS
    BARRIA, J
    HALMOS, PR
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 273 (02) : 621 - 630
  • [5] Toeplitz Operators and Asymptotic Equivariant Index
    de Monvel, L. Boutet
    MODERN ASPECTS OF THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS, 2011, 216 : 1 - 16
  • [6] Asymptotic behaviours and generalized Toeplitz operators
    Suciu, Laurian
    Suciu, Nicolae
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 349 (01) : 280 - 290
  • [7] ON ASYMPTOTIC TOEPLITZ AND HANKEL-OPERATORS
    FEINTUCH, A
    GOHBERG ANNIVERSARY COLLECTION, VOL 2: TOPICS IN ANALYSIS AND OPERATOR THEORY, 1989, 41 : 241 - 254
  • [8] Toeplitz and asymptotic Toeplitz operators on H2(Dn)
    Maji, Amit
    Sarkar, Jaydeb
    Sarkar, Srijan
    BULLETIN DES SCIENCES MATHEMATIQUES, 2018, 146 : 33 - 49
  • [9] Joint torsion of Toeplitz operators with H∞ symbols
    Carey, R
    Pincus, J
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1999, 33 (03) : 273 - 304
  • [10] Joint torsion of Toeplitz operators with H∞ symbols
    Richard Carey
    Joel Pincus
    Integral Equations and Operator Theory, 1999, 33 : 273 - 304