Fringe localization in the Twyman-Green Interferometer using extended monochromatic sources

被引:1
|
作者
Schwider, Johannes [1 ]
机构
[1] Univ Erlangen Nurnberg, Inst Opt, Max Planck Res Grp, D-91058 Erlangen, Germany
来源
INTERFEROMETRY XIII: TECHNIQUES AND ANALYSIS | 2006年 / 6292卷
关键词
spatial coherence; interferometry; phase shifting interferometry; extended monochromatic sources;
D O I
10.1117/12.683711
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is well known that coherent illumination causes dust diffraction patterns which limit the ultimate accuracy of phase measurements. By the use of an extended monochromatic light source the phase can considerably be smoothened allowing a better accuracy for phase measurements. Before the invention of the laser interferometry had to use extended monochromatic sources like spectrum lamps. For plane mirror interferometers illuminated with an extended monochromatic incoherent source the localization plane and the contrast distribution in space have been described in extenso in the literature (see e.g. G. Schulz). In the 40-th of last century G. Hansen derived the condition for high fringe contrast in the Twyman-Green interferometer by rectifying the Twyman-Green geometry of sphericity tests to a plane mirror interferometer. Experiments will be presented using an extended source in form of a laser spot on a rotating scatterer demonstrating the theoretical background. These experiments demonstrate the necessity to image the surface to be tested as well as the reference surface sharply onto the detector plane in order to maintain high contrast. Due to the extended source the fringes are smooth and represent a cos-type intensity distribution.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Coherent characteristics of broadband and extended light sources based on the Twyman-Green interferometer
    Zhou, Shuhong
    Wang, Shanshan
    Zhang, Nansheng
    Hu, Yao
    Hao, Qun
    APPLIED OPTICS, 2025, 64 (01) : 194 - 204
  • [2] HOLOGRAPHIC TWYMAN-GREEN INTERFEROMETER
    CHEN, CW
    BRECKINRIDGE, JB
    APPLIED OPTICS, 1982, 21 (14): : 2563 - 2568
  • [3] MULTIPASS TWYMAN-GREEN INTERFEROMETER
    LANGENBECK, P
    APPLIED OPTICS, 1967, 6 (08) : 1425 - +
  • [4] OPTIMIZATION OF PERFORMANCE OF TWYMAN-GREEN INTERFEROMETER
    CHAKRABORTY, AK
    SEN, KK
    GHOSH, H
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 1972, 10 (07) : 548 - +
  • [5] IR TWYMAN-GREEN INTERFEROMETER/METER
    KWON, O
    WYANT, JC
    HAYSLETT, CR
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1977, 67 (10) : 1365 - 1365
  • [6] TWYMAN-GREEN INTERFEROMETER FOR TESTING MICROSPHERES
    SCHWIDER, J
    FALKENSTORFER, O
    OPTICAL ENGINEERING, 1995, 34 (10) : 2972 - 2975
  • [7] A self-adjusting Twyman-Green interferometer for an extended image field
    Thumser, C
    Schulz, M
    Weingartner, I
    OPTIK, 1997, 104 (03): : 125 - 130
  • [8] Self-adjusting Twyman-Green interferometer for an extended image field
    Thumser, Ch.
    Schulz, M.
    Weingaertner, I.
    Optik (Jena), 1997, 104 (03): : 125 - 130
  • [9] Twyman-Green interferometer using virtual optics for eliminating reference wave
    Cheol-Ki Min
    Sungbin Jeon
    Hyungbae Moon
    Kyoung-Su Park
    No-Cheol Park
    Hyunseok Yang
    Young-Pil Park
    Microsystem Technologies, 2013, 19 : 1505 - 1511
  • [10] Optical image processing using phase reversal Twyman-Green interferometer
    Rao, VV
    Mohan, NK
    VISUAL INFORMATION PROCESSING XI, 2002, 4736 : 184 - 188