Automorphism Groups of Circulant Digraphs With Applications to Semigroup Theory

被引:6
|
作者
Araujo, Joao [1 ,2 ]
Bentz, Wolfram [3 ]
Dobson, Edward [4 ,5 ]
Konieczny, Janusz [6 ]
Morris, Joy [7 ]
机构
[1] Univ Aberta, P-1749016 Lisbon, Portugal
[2] Univ Lisbon, Fac Ciencias, CEMAT Ciencias, P-1749016 Lisbon, Portugal
[3] Univ Hull, Sch Math & Phys Sci, Kingston Upon Hull HU6 7RX, Yorks, England
[4] Mississippi State Univ, Dept Math & Stat, PO Drawer MA, Mississippi State, MS 39762 USA
[5] Univ Primorska, IAM, Koper 6000, Slovenia
[6] Univ Mary Washington, Dept Math, Fredericksburg, VA 22408 USA
[7] Univ Lethbridge, Dept Math & CS, Lethbridge, AB T1K 3M4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ENDOMORPHISM-MONOIDS; PERMUTATION-GROUPS; SCHUR RINGS; ISOMORPHISMS;
D O I
10.1007/s00493-016-3403-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the automorphism groups of circulant digraphs whose connection sets are relatively small, and of unit circulant digraphs. For each class, we either explicitly determine the automorphism group or we show that the graph is a "normal" circulant, so the automorphism group is contained in the normalizer of a cycle. Then we use these characterizations to prove results on the automorphisms of the endomorphism monoids of those digraphs. The paper ends with a list of open problems on graphs, number theory, groups and semigroups.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [1] Automorphism Groups of Circulant Digraphs With Applications to Semigroup Theory
    João Araújo
    Wolfram Bentz
    Edward Dobson
    Janusz Konieczny
    Joy Morris
    Combinatorica, 2018, 38 : 1 - 28
  • [2] The automorphism groups of circulant digraphs of degree 3
    Huang, QX
    Yuan, JJ
    ARS COMBINATORIA, 1996, 44 : 263 - 271
  • [3] The automorphism groups of minimal infinite circulant digraphs
    Meng, JX
    Huang, QX
    EUROPEAN JOURNAL OF COMBINATORICS, 1997, 18 (04) : 425 - 429
  • [4] On the automorphism groups of almost all circulant graphs and digraphs
    Bhoumik, Soumya
    Dobson, Edward
    Morris, Joy
    ARS MATHEMATICA CONTEMPORANEA, 2014, 7 (02) : 499 - 518
  • [5] On automorphism groups of circulant digraphs of square-free order
    Dobson, E
    Morris, J
    DISCRETE MATHEMATICS, 2005, 299 (1-3) : 79 - 98
  • [6] Automorphism groups of Cayley digraphs
    Feng, Yan-Quan
    Lu, Zai-Ping
    Xu, Ming-Yo
    APPLICATIONS OF GROUP THEORY TO COMBINATORICS, 2008, : 13 - +
  • [7] Automorphism groups of circulant graphs - a survey
    Morris, Joy
    GRAPH THEORY IN PARIS: PROCEEDINGS OF A CONFERENCE IN MEMORY OF CALUDE BERGE, 2007, : 311 - 325
  • [8] Automorphism groups of rational circulant graphs
    Klin, Mikhail
    Kovacs, Istvan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [9] Automorphism groups and isomorphisms of Cayley digraphs
    Xu, MY
    DISCRETE MATHEMATICS, 1998, 182 (1-3) : 309 - 319
  • [10] Automorphism groups of wreath product digraphs
    Dobson, Edward
    Morris, Joy
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):