Asymptotic Analysis of Acoustic Waves in a Porous Medium: Microincompressible Flow

被引:3
|
作者
Diaz-Alban, Jose [1 ]
Masmoudi, Nader [1 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
Acoustic waves; Bloch decomposition; Boundary layers; Compressible Navier-Stokes; Porous medium; Stokes; NAVIER-STOKES EQUATIONS; HOMOGENIZATION; BOUNDARY; CONVERGENCE; DOMAINS; LAYERS; TIME;
D O I
10.1080/03605302.2014.926371
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is the second in a series of three papers that studies acoustic waves governed by the linearized compressible Stokes equations in a porous medium. In particular, we want to analyze the simultaneous inviscid and high frequency limits of fluid flows in a porous medium. The presence of time-space boundary layers decouples the flow into an incompressible (that we call microincompressible) and an acoustic part (that we call micro-acoustic) on the microscopic scale. While this paper employs the two-scale methods used in our first paper [10], the present boundary layer phenomenon requires additional weak convergence tools. Using the Bloch decomposition, we introduce modified Helmholtz operators, enabling us to split the flow into its microincompressible and microacoustic parts. Closed equations for the microincompressible flow are obtained using two-scale convergence, while closed equations for the microacoustic flow are given in our forthcoming paper.
引用
收藏
页码:2125 / 2167
页数:43
相关论文
共 50 条
  • [1] ASYMPTOTIC ANALYSIS OF ACOUSTIC WAVES IN A POROUS MEDIUM: INITIAL LAYERS IN TIME
    Diaz-Alban, Jose
    Masmoudi, Nader
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2012, 10 (01) : 239 - 265
  • [2] Asymptotic analysis of surface waves at vacuum/porous medium and liquid/porous medium interfaces
    Edelman, I
    Wilmanski, K
    [J]. CONTINUUM MECHANICS AND THERMODYNAMICS, 2002, 14 (01) : 25 - 44
  • [3] Asymptotic analysis of surface waves at vacuum/porous medium and liquid/porous medium interfaces
    I. Edelman
    K. Wilmanski
    [J]. Continuum Mechanics and Thermodynamics, 2002, 14 : 25 - 44
  • [4] Asymptotic expansion for a flow in a periodic porous medium
    Marusic-Paloka, E
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 1997, 325 (07): : 369 - 374
  • [5] Acoustic Waves in Porous Medium Containing Gas Hydrate
    Gubaidullin, A. A.
    Boldyreva, O. Yu.
    Dudko, D. N.
    [J]. ARCTIC, SUBARCTIC: MOSAIC, CONTRAST, VARIABILITY OF THE CRYOSPHERE, 2015, : 80 - 83
  • [6] SCATTERING OF ACOUSTIC-WAVES IN AN UNBOUNDED POROUS ELASTIC MEDIUM
    YU, SM
    YU, T
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1990, 88 (03): : 1523 - 1529
  • [7] Investigation of acoustic waves propagation and flow in nanodispersed medium
    S. P. Bardakhanov
    V. I. Lysenko
    V. V. Obanin
    D. Yu. Trufanov
    [J]. Thermophysics and Aeromechanics, 2011, 18 : 25 - 30
  • [8] Investigation of acoustic waves propagation and flow in nanodispersed medium
    Bardakhanov, S. P.
    Lysenko, V. I.
    Obanin, V. V.
    Trufanov, D. Yu
    [J]. THERMOPHYSICS AND AEROMECHANICS, 2011, 18 (01) : 25 - 30
  • [9] Bulk and surface waves in porous media: Asymptotic analysis
    Edelman, I
    [J]. MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, WAVES 2003, 2003, : 163 - 168
  • [10] ASYMPTOTIC AND NUMERICAL ANALYSIS OF A POROUS MEDIUM MODEL FOR TRANSPIRATION-DRIVEN SAP FLOW IN TREES
    Janbek, Bebart Maisar
    Stockie, John M.
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (04) : 2028 - 2056