Chemical Aspects of the Candidate Antiferromagnetic Topological Insulator MnBi2Te4

被引:225
|
作者
Zeugner, Alexander [1 ]
Nietschke, Frederik [6 ]
Wolter, Anja U. B. [7 ]
Gass, Sebastian [7 ]
Vidal, Raphael C. [8 ]
Peixoto, Thiago R. F. [8 ]
Pohl, Darius [2 ,7 ]
Damm, Christine [7 ]
Lubk, Axel [7 ]
Hentrich, Richard [7 ]
Moser, Simon K. [8 ,9 ]
Fornari, Celso [8 ]
Min, Chul Hee [8 ]
Schatz, Sonja [8 ]
Kissner, Katharina [8 ]
Uenzelmann, Maximilian [8 ]
Kaiser, Martin [1 ]
Scaravaggi, Francesco [7 ]
Rellinghaus, Bernd [5 ,7 ]
Nielsch, Kornelius [3 ,4 ,7 ]
Hess, Christian [7 ]
Buechner, Bernd [2 ,7 ]
Reinert, Friedrich [8 ]
Bentmann, Hendrik [8 ]
Oeckler, Oliver [6 ]
Doert, Thomas [1 ]
Ruck, Michael [1 ,10 ]
Isaeva, Anna [5 ,7 ]
机构
[1] Tech Univ Dresden, Fac Chem & Food Chem, D-01062 Dresden, Germany
[2] Tech Univ Dresden, Cfaed, Dresden Ctr Nanoanal, D-01062 Dresden, Germany
[3] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany
[4] Tech Univ Dresden, Inst Appl Phys, D-01062 Dresden, Germany
[5] Tech Univ Dresden, Inst Solid State Phys, D-01062 Dresden, Germany
[6] Univ Leipzig, Inst Mineral Crystallog & Mat Sci, D-04275 Leipzig, Germany
[7] Leibniz Inst Solid State & Mat Res, D-01069 Dresden, Germany
[8] Univ Wurzburg, Expt Phys 7, D-97074 Wurzburg, Germany
[9] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[10] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany
关键词
ANOMALOUS HALL STATE; CRYSTAL-STRUCTURE; THERMOELECTRIC PROPERTIES; ELECTRONIC-STRUCTURES; POINT-DEFECTS; FERROMAGNETISM; REALIZATION; INTERFACE; PHASE;
D O I
10.1021/acs.chemmater.8b05017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-quality single crystals of MnBi2Te4 are grown for the first time by slow cooling within a narrow range between the melting points of Bi2Te3 (586 degrees C) and MnBi2Te4 (600 degrees C). Single-crystal X-ray diffraction and electron microscopy reveal ubiquitous antisite defects in both cation sites and, possibly, Mn vacancies (Mn0.85(3)Bi2.10(3)Te4). Thermochemical studies complemented with high-temperature X-ray diffraction establish a limited high temperature range of phase stability and metastability at room temperature. Nevertheless, the synthesis of MnBi2Te4 can be scaled-up as powders can be obtained at subsolidus temperatures and quenched at room temperature. Bulk samples exhibit long-range antiferromagnetic ordering below 24 K. The Mn(II) out-of-plane magnetic state is confirmed by the magnetization, X-ray photoemission, X-ray absorption, and linear dichroism measurements. The compound shows a metallic type of resistivity in the range 4.5-300 K and is an n-type conductor that reaches a thermoelectric figure of merit up to ZT = 0.17. Angle-resolved photoemission experiments show a surface state forming a gapped Dirac cone, thus strengthening MnBi2Te4 as a promising candidate for the intrinsic magnetic topological insulator, in accordance with theoretical predictions. The developed synthetic protocols enable further experimental studies of a crossover between magnetic ordering and nontrivial topology in bulk MnBi2Te4.
引用
收藏
页码:2795 / 2806
页数:12
相关论文
共 50 条
  • [1] Progress on the antiferromagnetic topological insulator MnBi2Te4
    Shuai Li
    Tianyu Liu
    Chang Liu
    Yayu Wang
    Hai-Zhou Lu
    X.C.Xie
    National Science Review, 2024, 11 (02) : 33 - 49
  • [2] Progress on the antiferromagnetic topological insulator MnBi2Te4
    Li, Shuai
    Liu, Tianyu
    Liu, Chang
    Wang, Yayu
    Lu, Hai-Zhou
    Xie, X. C.
    NATIONAL SCIENCE REVIEW, 2024, 11 (02)
  • [3] Native defects in antiferromagnetic topological insulator MnBi2Te4
    Huang, Zengle
    Du, Mao-Hua
    Yan, Jiaqiang
    Wu, Weida
    PHYSICAL REVIEW MATERIALS, 2020, 4 (12)
  • [4] Origins of electronic bands in the antiferromagnetic topological insulator MnBi2Te4
    Yan, Chenhui
    Fernandez-Mulligan, Sebastian
    Mei, Ruobing
    Lee, Seng Huat
    Protic, Nikola
    Fukumori, Rikuto
    Yan, Binghai
    Liu, Chaoxing
    Mao, Zhiqiang
    Yang, Shuolong
    PHYSICAL REVIEW B, 2021, 104 (04)
  • [5] Competing Magnetic Interactions in the Antiferromagnetic Topological Insulator MnBi2Te4
    Li, Bing
    Yan, J-Q
    Pajerowski, D. M.
    Gordon, Elijah
    Nedic, A-M
    Sizyuk, Y.
    Ke, Liqin
    Orth, P. P.
    Vaknin, D.
    McQueeney, R. J.
    PHYSICAL REVIEW LETTERS, 2020, 124 (16)
  • [6] Antiferromagnetic topological insulator MnBi2Te4: synthesis and magnetic properties
    Li, Hao
    Liu, Shengsheng
    Liu, Chang
    Zhang, Jinsong
    Xu, Yong
    Yu, Rong
    Wu, Yang
    Zhang, Yuegang
    Fan, Shoushan
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (02) : 556 - 563
  • [7] Thermal and thermoelectric properties of an antiferromagnetic topological insulator MnBi2Te4
    Zhang, H.
    Xu, C. Q.
    Lee, S. H.
    Mao, Z. Q.
    Ke, X.
    PHYSICAL REVIEW B, 2022, 105 (18)
  • [8] Magnetic Imaging of Domain Walls in the Antiferromagnetic Topological Insulator MnBi2Te4
    Sass, Paul M.
    Ge, Wenbo
    Yan, Jiaqiang
    Obeysekera, D.
    Yang, J. J.
    Wu, Weida
    NANO LETTERS, 2020, 20 (04) : 2609 - 2614
  • [9] Transport properties of thin flakes of the antiferromagnetic topological insulator MnBi2Te4
    Cui, Jianhua
    Shi, Mengzhu
    Wang, Honghui
    Yu, Fanghang
    Wu, Tao
    Luo, Xigang
    Ying, Jianjun
    Chen, Xianhui
    PHYSICAL REVIEW B, 2019, 99 (15)
  • [10] Analytical solution for the surface states of the antiferromagnetic topological insulator MnBi2Te4
    Sun, Hai-Peng
    Wang, C. M.
    Zhang, Song-Bo
    Chen, Rui
    Zhao, Yue
    Liu, Chang
    Liu, Qihang
    Chen, Chaoyu
    Lu, Hai-Zhou
    Xie, X. C.
    PHYSICAL REVIEW B, 2020, 102 (24)