A New Data-Driven Approach for Power IGBT Remaining Useful Life Estimation Based On Feature Reduction Technique and Neural Network

被引:20
|
作者
Ismail, Adla [1 ]
Saidi, Lotfi [1 ,2 ]
Sayadi, Mounir [1 ]
Benbouzid, Mohamed [2 ,3 ]
机构
[1] Univ Tunis, Elect Engn Dept, Lab Signal Image & Energy Mastery SIME, ENSIT, LR 13ES03, Tunis 1008, Tunisia
[2] Univ Brest, Inst Rech Dupuy Lome, UMR CNRS IRDL 6027, F-29238 Brest, France
[3] Shanghai Maritime Univ, Engn Logist Coll, Shanghai 201306, Peoples R China
关键词
data-driven approach; IGBT; feedforward neural network; prognostic; power converter; remaining useful life; time-domain feature; wind energy system; feature reduction; RELIABILITY;
D O I
10.3390/electronics9101571
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The insulated gate bipolar transistor (IGBT) is a crucial component of power converters (PCVs) and is commonly used in several PCVs topologies. On the other hand, the investigation and the study of the IGBT component show several changes within its behavior and lifetime, while this component is highly influenced by the operating conditions. Indeed, the monitoring of this component is necessary to minimize unexpected downtime of the wind energy system (WES). However, an accurate prediction of IGBTs remaining useful life (RUL) is the key enabler for life-time-optimized operation. Consequently, this work proposes a new prognostic approach for online IGBTs monitoring that adopts the time-domain analysis to extract useful information that is used as an input in the generation of the health indicator. Moreover, this approach is based on combining both of principal component analysis (PCA) technique and the feedforward neural network (FFNN) technique. PCA is used to reduce features extracted from IGBTs and the FFNN is implemented to achieve online regression of the trend parameter obtained from the PCA technique. To investigate and evaluate the performance of our idea we used the NASA Ames Laboratory Prognostics Center of Excellence IGBTs accelerated aging database. Finally, the achieved results clearly show the strength of the new trend parameter for IGBTs RUL prediction. The most notable strong correlation within the proposed approach is in relation to accuracy value, with an acceptable average accuracy rate of 60.4%.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] Power IGBT Remaining Useful Life Estimation Using Neural Networks based Feature Reduction
    Ismail, Adla
    Saidi, Lotfi
    Sayadi, Mounir
    Benbouzid, Mohamed
    2020 6TH IEEE INTERNATIONAL ENERGY CONFERENCE (ENERGYCON), 2020, : 137 - 142
  • [2] A Data-Driven Neural Network Approach for Remaining Useful Life Prediction
    Yan, Jihong
    Guo, Chaozhong
    Wang, Xing
    Zhao, Debin
    ADVANCED DESIGN AND MANUFACTURE III, 2011, 450 : 544 - 547
  • [3] Degradation data-driven approach for remaining useful life estimation
    Zhiliang Fan
    Guangbin Liu
    Xiaosheng Si
    Qi Zhang
    Qinghua Zhang
    JournalofSystemsEngineeringandElectronics, 2013, 24 (01) : 173 - 182
  • [4] Degradation data-driven approach for remaining useful life estimation
    Fan, Zhiliang
    Liu, Guangbin
    Si, Xiaosheng
    Zhang, Qi
    Zhang, Qinghua
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2013, 24 (01) : 173 - 182
  • [5] A Multi-source Data-driven Approach to IGBT Remaining Useful Life Prediction
    Hao, Xiaoyu
    Wang, Qiang
    Yang, Yahong
    Ma, Hongbo
    Wang, Xianzhi
    Chen, Gaige
    2024 6TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING, ICNLP 2024, 2024, : 733 - 737
  • [6] A Data-Driven Approach Based Health Indicator for Remaining Useful Life Estimation of Bearings
    Akuruyejo, Mufutau
    Kowontan, Samuel
    Ben Ali, Jaouher
    2017 18TH INTERNATIONAL CONFERENCE ON SCIENCES AND TECHNIQUES OF AUTOMATIC CONTROL AND COMPUTER ENGINEERING (STA), 2017, : 284 - 289
  • [7] Dynamic Battery Remaining Useful Life Estimation: An On-line Data-driven Approach
    Zhou, Jianbao
    Liu, Datong
    Peng, Yu
    Peng, Xiyuan
    2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2012, : 2196 - 2199
  • [8] Degradation Data-Driven Analysis for Estimation of the Remaining Useful Life of a Motor
    Banerjee, Ahin
    Gupta, Sanjay K.
    Putcha, Chandrasekhar
    ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2021, 7 (02):
  • [9] Remaining Useful Life Estimation Based on a New Convolutional and Recurrent Neural Network
    Zhang, Xinyun
    Dong, Yan
    Wen, Long
    Lu, Fang
    Li, Wei
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2019, : 317 - 322
  • [10] A Physics-Informed Training Approach for Data-Driven Method in Remaining Useful Life Estimation
    He, Yuxuan
    Su, Huai
    Zio, Enrico
    Fan, Lin
    Zhang, Jinjun
    2022 6TH INTERNATIONAL CONFERENCE ON SYSTEM RELIABILITY AND SAFETY, ICSRS, 2022, : 500 - 504