Hybrid Artificial Neural Network for Induction Motor Parameter Estimation

被引:0
|
作者
Marcelino Gutierrez-Villalobos, Jose [1 ]
Agustin Martinez-Hernandez, Moises [1 ]
Mendoza-Mondragon, Fortino [1 ]
Rodriguez-Resendiz, Juvenal [1 ]
Rodriguez-Ponce, Rafael [1 ]
机构
[1] Univ Autonoma Queretaro, Lab Mecatron, Queretaro 76010, Mexico
关键词
DRIVES;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Three-phase induction motor electric parameter estimation has been widely used to improve induction motor control performance. A precise match between electrical parameter values and estimated ones is imperative. A value deviation can make induction motor misbehave, which can cause motor overheating even instability. Parameter estimation can be achieved on-line or off-line way with a large number of methods developed to calculate magnetic flux, motor speed, rotor resistance and rotor time constant. These methods include observers, adaptive systems, spectral analysis and artificial intelligence such as neural networks and fuzzy logic. This paper is focused on a hybrid neural network proposed to obtain rotor resistance and speed values, using Texas Instrument development tools to improve a sensorless vector control scheme an improve motor performance.
引用
收藏
页码:85 / 89
页数:5
相关论文
共 50 条
  • [1] Compact Artificial Neural Network for Induction Motor Speed Estimation
    Goedtel, A.
    da Silva, I. N.
    Suetake, M.
    do Nascimento, C. F.
    da Silva, S. A. O.
    [J]. 2009 INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS, VOLS 1-3, 2009, : 1394 - +
  • [2] Performance Estimation of Induction Motor using Artificial Neural Network
    Lee, Ho-Young
    Lee, Jong-Il
    Kwon, Soon-O
    Lee, Su-Woong
    [J]. 2018 25TH INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP), 2018,
  • [3] Artificial immune system for parameter estimation of induction motor
    Sakthivel, V. P.
    Bhuvaneswari, R.
    Subramanian, S.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (08) : 6109 - 6115
  • [4] Induction Motor Flux Estimation Based on Artificial Neural Network Left-inversion
    Zhang, Hao
    Dai, Xianzhong
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1-5, 2008, : 911 - 915
  • [5] Practical sensorless induction motor drive employing an artificial neural network for online parameter adaptation
    Campbell, J
    Sumner, M
    [J]. IEE PROCEEDINGS-ELECTRIC POWER APPLICATIONS, 2002, 149 (04): : 255 - 260
  • [6] Control of Induction Motor Using Artificial Neural Network
    Kumar, Abhishek
    Singh, Rohit
    Mahodi, Chandan Singh
    Sahoo, Sarat Kumar
    [J]. ARTIFICIAL INTELLIGENCE AND EVOLUTIONARY COMPUTATIONS IN ENGINEERING SYSTEMS, ICAIECES 2016, 2017, 517 : 791 - 804
  • [7] Artificial neural network based induction motor design
    Hiyama, T
    Ikeda, M
    Nakayama, T
    [J]. 2000 IEEE POWER ENGINEERING SOCIETY WINTER MEETING - VOLS 1-4, CONFERENCE PROCEEDINGS, 2000, : 264 - 268
  • [8] Induction motor Parameter Estimation Using Hybrid Genetic Algorithm
    Sundareswaran, K.
    Shyam, H. N.
    Palani, S.
    James, Joby
    [J]. IEEE REGION 10 COLLOQUIUM AND THIRD INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS, VOLS 1 AND 2, 2008, : 74 - +
  • [9] Estimation of reservoir parameter using a hybrid neural network
    Aminzadeh, F
    Barhen, J
    Glover, CW
    Toomarian, NB
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 1999, 24 (01) : 49 - 56
  • [10] Reservoir parameter estimation using a hybrid neural network
    Aminzadeh, F
    Barhen, J
    Glover, CW
    Toomarian, NB
    [J]. COMPUTERS & GEOSCIENCES, 2000, 26 (08) : 869 - 875