Compact moduli spaces for slope-semistable sheaves

被引:12
|
作者
Greb, Daniel [1 ]
Toma, Matei [2 ]
机构
[1] Univ Duisburg Essen, Fak Math, Essener Seminar Algebra Geometrie & Arithmet, D-45117 Essen, Germany
[2] Univ Lorraine, Inst Math Elie Cartan, BP 239, F-54506 Vandoeuvre Les Nancy, France
来源
ALGEBRAIC GEOMETRY | 2017年 / 4卷 / 01期
关键词
slope-stability; moduli of sheaves; wall-crossing; Donaldson-Uhlenbeck compactification; determinant line bundle; DONALDSON POLYNOMIAL INVARIANTS; MUMFORD-THADDEUS PRINCIPLE; HOLOMORPHIC BUNDLES; VECTOR-BUNDLES; VARIETIES; FAMILIES; GIESEKER; MANIFOLD; HILBERT; SURFACE;
D O I
10.14231/AG-2017-003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We resolve pathological wall-crossing phenomena for moduli spaces of sheaves on higher-dimensional complex projective manifolds. This is achieved by considering slopesemistability with respect to movable curves rather than divisors. Moreover, given a projective n-fold and a curve C that arises as the complete intersection of n - 1 very ample divisors, we construct a modular compactification of the moduli space of vector bundles that are slope-stable with respect to C. Our construction generalises the algebro-geometric construction of the Donaldson-Uhlenbeck compactification by Le Potier and Li. Furthermore, we describe the geometry of the newly constructed moduli spaces by relating them to moduli spaces of simple sheaves and to Gieseker-Maruyama moduli spaces.
引用
收藏
页码:40 / 78
页数:39
相关论文
共 50 条