Backpropagation of an image similarity metric for Autoassociative Neural Networks

被引:1
|
作者
Kropas-Hughes, CV
Rogers, SK
Oxley, ME
Kabrisky, M
机构
[1] USAF, Res Lab, Mat & Mfg Directorate, AFRL,MLMR, Wright Patterson AFB, OH 45433 USA
[2] Qualia Comp Inc, Beavercreek, OH USA
[3] USAF, Inst Technol, Dept Math, Wright Patterson AFB, OH 45433 USA
[4] USAF, Inst Technol, Dept Elect Engn, Wright Patterson AFB, OH 45433 USA
关键词
Autoassociative Neural Networks; error function; image compression; visual difference predictor;
D O I
10.1007/s100440050004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Autoassociative Neural Networks (AANNs) are most commonly used fur image data compression. The goal of an AANN for image data is to have the network output be 'similar' to the input. Most of the research in this area use backpropagation training with Mean-Squared Error (MSE) as the optimisation criteria. This paper presents an alternative error function called the Visual Difference Predictor (VDP) based on concepts from the human-visual system. Using the VDP as the error function provides a criteria to train an AANN more efficiently, and results in faster convergence of the weights, while producing an output image perceived to be very similar by a human observer.
引用
收藏
页码:31 / 38
页数:8
相关论文
共 50 条
  • [1] Backpropagation of an Image Similarity Metric for Autoassociative Neural Networks
    C. V. Kropas-Hughes
    S. K. Rogers
    M. E. Oxley
    M. Kabrisky
    [J]. Pattern Analysis & Applications, 2000, 3 : 31 - 38
  • [2] AUTOASSOCIATIVE NEURAL NETWORKS FOR IMAGE COMPRESSION
    BASSO, A
    KUNT, M
    [J]. EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, 1992, 3 (06): : 593 - 598
  • [3] Augmented Efficient BackProp for Backpropagation Learning in Deep Autoassociative Neural Networks
    Embrechts, Mark J.
    Hargis, Blake J.
    Linton, Jonathan D.
    [J]. 2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [4] Mirror image learning for autoassociative neural networks
    Shimizu, S
    Ohyama, W
    Wakabayashi, T
    Kimura, F
    [J]. SEVENTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS I AND II, PROCEEDINGS, 2003, : 804 - 808
  • [5] SIGNAL DETECTABILITY ENHANCEMENT WITH AUTOASSOCIATIVE BACKPROPAGATION NETWORKS
    KO, HS
    BARAN, RH
    [J]. NEUROCOMPUTING, 1994, 6 (02) : 219 - 236
  • [6] AUTOASSOCIATIVE NEURAL NETWORKS
    KRAMER, MA
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 1992, 16 (04) : 313 - 328
  • [7] Satellite Image Encryption Using Neural Networks Backpropagation
    Ismail, I. A.
    Galal-Edeen, Galal H.
    Khattab, Sherif
    El Bahtity, Mohamed Abd Elhamid M.
    [J]. 2012 22ND INTERNATIONAL CONFERENCE ON COMPUTER THEORY AND APPLICATIONS (ICCTA), 2012, : 148 - 152
  • [8] Dynamics of autoassociative neural networks
    Morinaga, S
    Yoshizawa, S
    [J]. PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 233 - 236
  • [9] On impulsive autoassociative neural networks
    Guan, ZH
    Lam, J
    Chen, GR
    [J]. NEURAL NETWORKS, 2000, 13 (01) : 63 - 69
  • [10] An AutoAssociative Neural Network for Image Segmentation
    Marcolino dos Santos, Hugo Leonardo
    Torres Fernandes, Bruno Jose
    Maciel Fernandes, Sergio Murilo
    [J]. 2016 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2016,