Quasi-Lie schemes: theory and applications

被引:16
|
作者
Carinena, Jose F. [1 ]
Grabowski, Janusz [2 ]
de Lucas, Javier [1 ,2 ]
机构
[1] Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain
[2] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
关键词
SUPERPOSITION RULES; 1ST INTEGRALS; EMDEN-FOWLER; SYSTEMS; EQUATION;
D O I
10.1088/1751-8113/42/33/335206
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A powerful method to solve nonlinear first-order ordinary differential equations, which is based on a geometrical understanding of the corresponding dynamics of the so-called Lie systems, is developed. This method enables us not only to solve some of these equations, but also gives geometrical explanations for some, already known, ad hoc methods of dealing with such problems.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Quasi-Lie schemes for PDEs
    Carinena, J. F.
    Grabowski, J.
    de Lucas, J.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (07)
  • [2] Quasi-Lie families, schemes, invariants and their applications to Abel equations
    Carinena, J. F.
    de Lucas, J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (02) : 648 - 671
  • [3] Quasi-Lie schemes and Emden-Fowler equations
    Carinena, Jose F.
    Leach, P. G. L.
    de Lucas, Javier
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)
  • [4] Quantum quasi-Lie systems: properties and applications
    Carinena, J. F.
    de Lucas, J.
    Sardon, C.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (04):
  • [5] Quantum quasi-Lie systems: properties and applications
    J.F. Cariñena
    J. de Lucas
    C. Sardón
    The European Physical Journal Plus, 138
  • [6] Quasi-Lie algebras
    Larsson, D
    Silvestrov, SD
    NONCOMMUTATIVE GEOMETRY AND REPRESENTATION THEORY IN MATHEMATICAL PHYSICS, 2005, 391 : 241 - 248
  • [7] A Quasi-Lie Schemes Approach to Second-Order Gambier Equations
    Carinena, Jose F.
    Guha, Partha
    de Lucas, Javier
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9
  • [8] Lie and quasi-Lie structures in thermodynamics
    Mrugala, R
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 874 - 878
  • [9] Bialgebra of quasi-Lie and Lie loops
    Bangoura, Momo
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (04) : 593 - 616
  • [10] Quasi-Lie algebras and a method for determining non-degeneracy of the quasi-Lie product
    Gould, MD
    Isaac, PS
    GROUP 22: PROCEEDINGS OF THE XII INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS, 1998, : 418 - 422